Patents Examined by Ciel P Contreras
  • Patent number: 11434576
    Abstract: System for, and methods of, recovering precious metals from precious metals-containing solids are described herein. Methods for the recovery of precious metals from precious metals-containing solids heating a salt mixture to form a molten salt mixture, adding a precious metals-containing solid to the molten salt mixture to form a molten salt/precious metals-containing solids mixture, adding an oxidizing agent to the molten salt/precious metals-containing solids mixture, forming a liquid solution from molten salt/precious metals-containing solids mixture, the liquid solution comprising soluble precious metal salts, and subjecting the liquid solution to an electrodeposition process to form purified precious metals. Systems for, and methods of, recovery precious metals from precious metals-containing solids allow for the recovery of salt mixtures and reuse of the salt mixtures in subsequent precious metals recovery operations.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: September 6, 2022
    Assignee: CLEAN RESOURCES PTE. LTD
    Inventors: Abraham Fouad Jalbout, Hassan Elsentriecy
  • Patent number: 11408082
    Abstract: An electrochemical system includes an electrochemical compressor through which a working fluid that includes a component that primarily acts as an electrochemically-active component flows; a sealed vessel in which the electrochemical compressor is housed; an inlet conduit for passing working fluid into the vessel; and an outlet conduit for passing fluid out of the vessel. The working fluid that leaks from the electrochemical compressor is contained within the vessel.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: August 9, 2022
    Assignee: FFI IONIX IP, INC.
    Inventors: Bamdad Bahar, Steven Naugler
  • Patent number: 11401615
    Abstract: Disclosed is an end assembly for use in a unipolar filter press electrolyser, where the unipolar filter press electrolyser has a filter press stack. The end assembly of the unipolar filter press electrolyser includes an end plate component having two apertures, the two apertures being alignable with channels formed in the filter press stack. The two apertures include a first aperture configured to receive a stream of liquid electrolyte and gases from the filter press stack, and a second aperture configured to receive a stream of recirculated liquid electrolyte. In addition, the end assembly includes an end clamp configured to apply a clamping force on the end plate component to securely retain the filter press stack. The end clamp includes one gas offtake port to extract gases from the stream of liquid electrolyte and gases from the first aperture and discharge the gases out of the unipolar filter press electrolyser.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: August 2, 2022
    Inventors: Andrew T. B. Stuart, Raynald G. Lachance, Edward D. B. Stuart, Jaideep S. Spal
  • Patent number: 11401603
    Abstract: 3D metal printhead assembly method of manufacture that uses metal electrodeposition to construct parts. The printhead may be constructed by depositing layers on top of a backplane that contains control and power circuits. Deposited layers may include insulating layers and an anode layer that contain deposition anodes that are in contact with the electrolyte to drive electrodeposition. Insulating layers may for example be constructed of silicon nitride or silicon dioxide; the anode layer may contain an insoluble conductive material such as platinum group metals and their associated oxides, highly doped semiconducting materials, and carbon based conductors. The anode layer may be deposited using chemical vapor deposition or physical vapor deposition. Alternatively in one or more embodiments the printhead may be constructed by manufacturing a separate anode plane component, and then bonding the anode plane to the backplane.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: August 2, 2022
    Assignee: FABRIC8LABS, INC.
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, Kareemullah Shaik, Edward White
  • Patent number: 11399439
    Abstract: The present invention relates to printed circuit boards (PCBs), and more particularly, to methods of forming high aspect ratio through holes and high precision stub removal in a printed circuit board (PCB). The high precision stub removal processes may be utilized in removing long stubs and short stubs. In the methods, multiple holes of varying diameter and depth are drilled from an upper and/or lower surface of the printed circuit board utilizing drills of different diameters.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: July 26, 2022
    Assignee: SANMINA CORPORATION
    Inventors: Douglas Ward Thomas, Shinichi Iketani, Dale Kersten
  • Patent number: 11384444
    Abstract: A method for electrochemical extraction of uranium from seawater using an oxygen vacancy (OV)-containing metal oxide includes the following steps: adding glycerin to a solution of indium nitrate in isopropanol, transferring a resulting mixture to a reactor, and conducting reaction to obtain a spherical indium hydroxide solid; dissolving the solid in deionized water, transferring a resulting solution to the reactor, and conducting reaction to obtain a flaky indium hydroxide solid; calcining the solid to obtain calcined OV-containing In2O3-x; adding the In2O3-x to ethanol, and adding a membrane solution; coating a resulting solution uniformly on carbon paper, and naturally drying the carbon paper; clamping dried carbon paper with a gold electrode for being used as a working electrode for a three-electrode system; and adding simulated seawater to an electrolytic cell, placing the three-electrode system in the simulated seawater, and stirring the simulated seawater for electrolysis to extract uranium from the sea
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: July 12, 2022
    Assignee: SOUTHWEST UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Wenkun Zhu, Rong He, Yi Li, Tao Duan, Jia Lei, Tao Chen, Fan Yang
  • Patent number: 11371152
    Abstract: A CO2 reduction system has a cathode in contact with a catholyte. The cathode includes a selectivity-determining layer on an electron conductor. The selectivity-determining layer includes a selectivity-determining component that includes a substituted heterocycle.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: June 28, 2022
    Assignee: California Institute of Technology
    Inventors: Zhiji Han, Ruud Kortlever, Hsiang-Yun Chen, Jonas C. Peters, Theodor Agapie, Jorge A. Rosas Hernandez, Arnaud A. Thevenon
  • Patent number: 11359304
    Abstract: There is provided a powder supply apparatus that prevents powder from scattering as much as possible. There is provided the powder supply apparatus that supplies a powder containing a metal used for a plating to a plating solution. This powder supply apparatus includes a plating solution tank, a feed pipe, a gas supply line, and a spiral-air-flow-generating component. The plating solution tank is configured to house the plating solution. The feed pipe is configured to feed the powder into the plating solution tank. The gas supply line is configured to supply a gas. The spiral-air-flow-generating component is configured to receive the gas from the gas supply line to generate a spiral air flow heading toward the plating solution tank inside the feed pipe.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: June 14, 2022
    Assignee: EBARA CORPORATION
    Inventors: Shao Hua Chang, Jumpei Fujikata
  • Patent number: 11346013
    Abstract: A process for the separation of electrolyte from the carbon in a solid carbon/electrolyte cathode product formed at the cathode during molten carbonate electrolysis. The processes allows for easy separation of the solid carbon product from the electrolyte without any observed detrimental effect on the structure and/or stability of the resulting solid carbon nanomaterial.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: May 31, 2022
    Assignee: C2CNT LLC
    Inventors: Stuart Licht, Gad Licht
  • Patent number: 11339483
    Abstract: A water electrolyzer comprises an electrolyzer stack comprising at least two electrochemical cells. Each cell comprises an anion exchange membrane, a base metal anode electrocatalyst, a base metal cathode electrocatalyst, and a sufficiently long ion conduction path between adjacent cells such that shunt currents are less than 1% of the total current supplied to the stack.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: May 24, 2022
    Assignee: Alchemr, Inc.
    Inventor: Richard I. Masel
  • Patent number: 11338255
    Abstract: A micro-bubble generating system according to an embodiment of the present invention may include an electrolytic bath configured to generate primary micro-bubbles; a water supply hose which is connected to an outlet end of the electrolytic bath; and a micro-bubble generating device which is connected to the outlet end of the water supply hose to generate secondary micro-bubbles having a smaller diameter than the primary micro-bubbles.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: May 24, 2022
    Assignees: LG Electronics Inc., Chungang University Industry Academic Cooperation Foundation
    Inventors: Hyungki Hong, Sangki Woo, Sangsoo Ahn, Jongmin Kim, Seunghoon Oh, Jeongil Lee, Minsub Hwang
  • Patent number: 11339480
    Abstract: According to one embodiment, an electrolytic cell includes: a housing for retaining an electrolytic solution; a diaphragm that partitions an interior of the housing into an anode-side cell and a cathode-side cell; an anode electrode that is provided in the anode-side cell and has most of a surface in contact with an anode-side gas phase; and a cathode electrode that is provided in the cathode-side cell and has most of a surface in contact with a cathode-side gas phase. According to the other embodiment, a hydrogen production apparatus according to the present embodiment includes: an electrolytic solution tank that retains an electrolytic solution; and a pump that supplies the electrolytic solution between the anode electrode and the cathode electrode from the electrolytic solution tank.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: May 24, 2022
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hirotoshi Murayama
  • Patent number: 11339485
    Abstract: Improvements in an electrolysis electrode structure where fluid or gas enters a chamber with cathode and anode charged conductors to polarize and separate the flow into two separate paths for electrolysis of the fluid or gas. The conductors wrap around magnets to extend the range of the polarizing field beyond the range of the electrode conductors. Iron particles fan-out from the conductors and magnets to further extend the polarizing field from the magnets as well as creating increased surface area for gas or liquids to flow within and around the conductors, magnet and iron particles. Noble metal provides a thin plating that locks the position of the particles and provides an open structure to allow for the flow of gas or fluids at a high rate of flow and prevents the iron particles from being eroded by the flow.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: May 24, 2022
    Assignee: RQT Energy Storage Corp.
    Inventors: Jeffrey M Root, Clayton McMonigle Jones
  • Patent number: 11332838
    Abstract: A plating apparatus including a plating bath, a substrate holder to be arranged in the plating bath and adapted to hold a substrate, an anode for generating an electric field between the substrate and the anode, and at least one electric field shielding body for shielding the substrate holder and a part or the whole of the electric field, wherein the electric field shielding body has an opening portion for allowing the electric field between the substrate and the anode to pass therethrough, and is configured so as to be capable of adjusting an opening size in a first direction of the opening portion and an opening size in a second direction of the opening portion independently of each other.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: May 17, 2022
    Assignee: EBARA CORPORATION
    Inventors: Gaku Yamasaki, Tomonori Hirao, Toshio Yokoyama
  • Patent number: 11332836
    Abstract: A hydrogen system including: a hydrogen production apparatus that produces hydrogen; a hydrogen storage apparatus that stores produced hydrogen; a first flow path, wherein hydrogen discharged from the hydrogen production apparatus flows into the hydrogen storage apparatus through the first flow path; a second flow path, wherein hydrogen discharged from the hydrogen storage apparatus flows into a hydrogen-using apparatus through the second flow path; a casing that houses the hydrogen production apparatus, the hydrogen storage apparatus, the first flow path and at least part of the second flow path; a third flow path, wherein hydrogen discharged from at least one of the hydrogen production apparatus, the hydrogen storage apparatus, the first flow path and the at least part of the second flow path flows outside the casing through the third flow path; a first valve provided in the third flow path; and a controller that opens the first valve.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: May 17, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yuuichi Yakumaru, Hiroaki Fujii, Atsushi Shimizu
  • Patent number: 11332835
    Abstract: A hydrogen system includes: a generator which generates hydrogen-containing gas; a storage which stores the hydrogen-containing gas generated by the generator; a first gas passage which connects the generator and the storage; a housing which houses the generator, the storage and the first gas passage; a second gas passage in which the hydrogen-containing gas discharged from the first gas passage to an outside of the housing flows; a first valve provided to the second gas passage; a third gas passage in which the hydrogen-containing gas discharged from the storage to the outside of the housing flows; a second valve provided to the third gas passage; and a controller which opens at least one of the first valve and the second valve.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: May 17, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yuuichi Yakumaru, Hiroaki Fujii, Atsushi Shimizu
  • Patent number: 11313036
    Abstract: Process for manufacturing a printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts. The printhead may be constructed by depositing layers on top of a backplane that contains control and power circuits. Deposited layers may include insulating layers and an anode layer that contain deposition anodes that are in contact with the electrolyte to drive electrodeposition. Insulating layers may for example be constructed of silicon nitride or silicon dioxide; the anode layer may contain an insoluble conductive material such as platinum group metals and their associated oxides, highly doped semiconducting materials, and carbon based conductors. The anode layer may be deposited using chemical vapor deposition or physical vapor deposition. Alternatively in one or more embodiments the printhead may be constructed by manufacturing a separate anode plane component, and then bonding the anode plane to the backplane.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: April 26, 2022
    Assignee: FABRIC8LABS, INC.
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, Edward White
  • Patent number: 11313035
    Abstract: Process for manufacturing a printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts. The printhead may be constructed by depositing layers on top of a backplane that contains control and power circuits. Deposited layers may include insulating layers and an anode layer that contain deposition anodes that are in contact with the electrolyte to drive electrodeposition. Insulating layers may for example be constructed of silicon nitride or silicon dioxide; the anode layer may contain an insoluble conductive material such as platinum group metals and their associated oxides, highly doped semiconducting materials, and carbon based conductors. The anode layer may be deposited using chemical vapor deposition or physical vapor deposition. Alternatively in one or more embodiments the printhead may be constructed by manufacturing a separate anode plane component, and then bonding the anode plane to the backplane.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: April 26, 2022
    Assignee: FABRIC8LABS, INC.
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, David Wirth
  • Patent number: 11299809
    Abstract: Disclosed is an electrolytic electrolysis device. According to an embodiment, the electrolytic electrolysis device includes: a tank in which a solvent is supplied through an inlet in a first side thereof, is stored therein, and then is discharged through an outlet in a second side thereof, and an electrolyte is input through an entrance formed in a third side thereof; an electrolysis part formed inside the tank and formed of multiple layers in which a plurality of mesh electrode parts and a plurality of diaphragm parts are alternately formed so that the electrolyte sequentially passes; and a discharge part in which a discharge hole is formed so that an electrolyzed gas in an upper portion of the electrolysis part is discharged.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: April 12, 2022
    Assignee: AQENTEC CO., LTD.
    Inventors: Jin Ho Jeong, Hun Arm Kim
  • Patent number: 11299811
    Abstract: An electrochemical reactor for use with a liquid electrolyte is capable of generating gaseous products. An electrically conducting porous layer that is hydrophilic on the catalyst side and hydrophobic on the gas side are utilized. These different surface properties promote the transport of product gases formed at the catalyst through the porous layer to the gas side. The catalyst is formed from a hybrid Cu2O—CuBr film that has a high selectivity for ethylene gas from reacting CO2 and water in an electrochemical cell.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: April 12, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Norma S. Tacconi, Wilaiwan Chanmanee, Brian Dennis, Krishnan Rajeshwar