Patents Examined by Colin T Sakamoto
  • Patent number: 11994568
    Abstract: A local coil of an embodiment includes a flat carrier body, at least one ventilation opening, and an antenna array for receiving RF signals in the frequency and power range of a magnetic resonance device. The flat carrier body is made of a reversibly deformable material and is moldable to the patient's shape. An embodiment of the invention further relates to a magnetic resonance system including a magnetic resonance device, a local coil and an electrical connecting cable. A method additionally relates to a method of manufacturing the local coil. A tool is further for use in a manufacturing process of a local coil.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: May 28, 2024
    Assignee: Siemens Healthineers AG
    Inventors: Stephan Zink, Thomas Kundner
  • Patent number: 11992363
    Abstract: Disclosed herein are dynamically adjusting ultrasound-imaging systems and methods thereof. For example, an ultrasound-imaging system can include an ultrasound probe, a console, and a display screen. The ultrasound probe includes an array of ultrasonic transducers that, when activated, emit generated ultrasound signals into a patient, receive reflected ultrasound signals from the patient, and convert the reflected ultrasound signals into corresponding electrical signals for processing into ultrasound images. The console is configured to execute instructions for dynamically adjusting a distance of activated ultrasonic transducers from a predefined target or area, an orientation of the activated ultrasonic transducers to the predefined target or area, or both the distance and the orientation of the activated ultrasonic transducers with respect to the predefined target or area.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: May 28, 2024
    Assignee: Bard Access Systems, Inc.
    Inventors: Steffan Sowards, William Robert McLaughlin, Anthony K. Misener
  • Patent number: 11986621
    Abstract: A method and system determine, with a computer system including one or more processors, a plurality of parameters associated with a volume in an object over time in a series of sequence blocks. In a sequence block in the series of sequence blocks, the plurality of parameters are determined as occurring simultaneously in the volume in the object. At least one parameter of the plurality of parameters varies from the sequence block to another sequence block in the series of sequence blocks, and the plurality of parameters include a contrast related parameter associated with a concentration of a contrast agent in the volume in the object over time in the series of sequence blocks. The computer system generates a signal evolution based on the plurality of parameters of the volume in the object over time in the series of sequence blocks, the signal evolution defining the contrast related parameter over time in the series of sequence blocks.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: May 21, 2024
    Assignee: BAYER HEALTHCARE LLC
    Inventor: Arthur E. Uber, III
  • Patent number: 11980414
    Abstract: The present invention discloses access devices and methods to create an access channel for introduction of one or more working devices into an anatomical region. The access channel is created using a visualization modality that is later removed before inserting one or more working devices through the access channel. This allows the methods and devices of the present invention to be used even in small sized natural or surgically created insertion tracts leading to the anatomical region. The access channel can be made of a device such as a sheath, a guidewire, and an elongate device comprising a lumen. Examples of visualization modalities are endoscopes and body insertable ultrasound imaging devices. The working devices can be used to perform a variety of diagnostic, therapeutic, or preventive procedures. Endometrial ablation devices and procedures have been used as an example to describe various aspects of the present invention.
    Type: Grant
    Filed: December 2, 2022
    Date of Patent: May 14, 2024
    Assignee: MicroCube, LLC
    Inventors: Dinesh I. Mody, Ketan Shroff, Amrish J. Walke, Clarence Emmons, Grason Ott, Michael Dobrowski, Meera Mody
  • Patent number: 11980442
    Abstract: The present invention relates to a device for the discrimination of biological tissues, such that it is capable of carrying out the discrimination of tissue under complicated operating conditions, for example due to the presence of contaminating elements given off by a cutting operation, due to the presence of moisture in the biological tissue, or due to the presence of a non-controlled atmosphere that interferes with the results of the readings. The invention allows building more complex devices, including cutting instruments, such that it is possible to carry out a surgical intervention in a safe manner by preventing cutting into tissues that are to be avoided during said cutting operation.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: May 14, 2024
    Assignee: Deneb Medical, S.L.
    Inventors: Noé Ortega-Quijano, Nebai Bernal Simón, Iñigo Olcoz Basarte, Juan Arregui Altuna, Aritz Lazkoz Del Campo, José Antonio Aguilera Andoaga, Carlos Aragón Garbizu
  • Patent number: 11980502
    Abstract: A method of performing shear wave elastography in tissue includes transmitting successively a series of ultrasound push pulses in the tissue in a region of interest (ROI) using a single array transducer. The acoustic intensities of the push pulses are sinusoidally modulated with a modulation frequency, Each push pulse generates an acoustic radiation force that pushes the tissue and creates an individual shear wave propagating through the tissue. The amplitudes of the shear waves, and therefore, the displacements produced by the push pulses, are positively proportionally to the intensities of the push pulses. The successively created individual shear waves with different amplitudes sum together to form a continuous, harmonic summed shear wave with a single frequency the same as the modulation frequency of the push pulses.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: May 14, 2024
    Assignee: The Penn State Research Foundation
    Inventors: Daniel Humberto Cortes Correales, Che-Yu Lin, Seyedali Sadeghi
  • Patent number: 11980497
    Abstract: A method for measuring viscoelastic properties of a viscoelastic medium, the method including positioning a probe in contact with the viscoelastic medium, the probe extending along a longitudinal axis and being adapted to carry out transient elastography measurements and including a casing, at least one ultrasound a transducer arranged at a tip of the probe and adapted to generate ultrasounds, a force sensor configured to measure a force applied by the tip of the probe, and a vibrator arranged in the casing and adapted to generate a low-frequency wave, measuring a contact force by the force sensor; generating a measurement ready signal by the probe when the measured contact force is higher than a minimum measurement force threshold, and when the measurement ready signal has been generated, triggering a transient elastography measurement.
    Type: Grant
    Filed: June 7, 2023
    Date of Patent: May 14, 2024
    Assignee: ECHOSENS
    Inventor: Laurent Sandrin
  • Patent number: 11974881
    Abstract: A system and method for providing an anatomic orientation indicator with a patient-specific model of an anatomical structure of interest extracted from a three-dimensional (3D) ultrasound volume is provided. The method includes extracting the anatomical structure of interest from the 3D volume and generating a patient-specific model of the anatomical structure of interest. The method includes generating an anatomic orientation indicator including at least one mocked patient anatomy model of an anatomical structure adjacent the anatomical structure of interest at a position and orientation relative the patient-specific model. The method includes displaying the anatomic orientation indicator with the patient-specific model at a same first point of view. The method includes receiving an instruction to change a point of view of the patient-specific model to a second point of view and updating the displaying of the anatomic orientation indicator with the patient-specific model to the second point of view.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: May 7, 2024
    Assignee: GE Precision Healthcare LLC
    Inventor: Federico Veronesi
  • Patent number: 11963808
    Abstract: Various embodiments of a device for in-vivo measurements radiopharmaceuticals used for diagnosis and monitoring of radiotherapy are presented. In some embodiments, the present disclosure relates to a device having a cannula that may include a measurement chamber, a radiation detector and a delivery lumen, wherein the device may be used to both deliver material to the patient (e.g., radiotracers used in radiopharmaceuticals) and measure levels and concentrations of radioactive material in, for example, the patient's blood both during and after administration of the radioactive material. In some embodiments, particles emitted by the radioactive material interact with a scintillation material, resulting in the release of light that may be transmitted, via the scintillation material and/or fiber optic material, to an optical detectors or processor for processing.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: April 23, 2024
    Assignee: Lucerno Dynamics, LLC
    Inventors: Joshua G. Knowland, Ronald K. Lattanze, Paul Mozley, Steven Perrin
  • Patent number: 11957515
    Abstract: The present disclosure describes ultrasound imaging systems and methods configured to generate ultrasound images based on undersampled ultrasound data. The ultrasound images may be generated by applying a neural network trained with samples of known fully sampled data and undersampled data derived from the known fully sampled data to a acquired sparsely sampled data. The training of the neural network may involve training adversarial generative network including a generator and a discriminator. The generator is trained with sets of known undersampled data until the generator is capable of generating estimated image data, which the classifier is incapable of differentiation as either real or fake, and the trained generator may then be applied to unknown undersampled data.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: April 16, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christine Menking Swisher, Jean-Luc Francois-Marie Robert, Man Nguyen
  • Patent number: 11957513
    Abstract: The present disclosure advantageously describes ultrasound imaging arrays that comprise ergonomic, non-rectangular shapes, as well as associated systems and methods. Non-rectangular transducer arrays allow for ergonomic probe shapes that improve patient comfort, maneuverability of the ultrasound device, and operator workflow. For example, an ultrasound imaging device can include an array of acoustic elements comprising a non-rectangular perimeter. The array includes a plurality of active elements configured to emit ultrasound energy and receive echoes corresponding to the emitted ultrasound energy, and a plurality of buffer elements surrounding the plurality of active elements at the non-rectangular perimeter of the array of acoustic elements. An edge seal comprising a sealing material is positioned at least partially around the plurality of buffer elements, and a buffer element of the plurality of buffer elements is spaced from at least one other buffer element by the sealing material of the edge seal.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: April 16, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Wojtek Sudol
  • Patent number: 11957472
    Abstract: A brain measurement apparatus includes: a magnetoencephalograph including optically pumped magnetometers, magnetic sensors for measuring geomagnetic field at positions of the optically pumped magnetometers, magnetic sensors for measuring a fluctuating magnetic field at the positions of the optically pumped magnetometers, nulling coils for cancelling the geomagnetic field, and an active shield coil for cancelling the fluctuating magnetic field; an MRI apparatus including nulling coils for applying a static magnetic field and a gradient magnetic field, a transmission coil, and a receive coil; and a control device that, when measuring a brain's magnetic field, controls currents supplied to the nulling coils and the active shield coil based on measured values of the magnetic sensors and, when measuring an MR image, controls the static magnetic field and the gradient magnetic field by controlling currents supplied to the nulling coils and generates an MR image from an output of the receive coil.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: April 16, 2024
    Assignees: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Takahiro Moriya, Takenori Oida, Akinori Saito, Motohiro Suyama, Tetsuo Kobayashi
  • Patent number: 11957518
    Abstract: A probe-side processor generates image information data on the basis of a sound ray signal generated, and the image information data generated by the probe-side processor is stored in a probe-side cine-memory. In a case where a freeze mode is designated, the past image information data stored in the probe-side cine-memory is wirelessly transmitted from the probe-side wireless communication circuit, and a terminal-side processor displays an ultrasound image on a monitor on the basis of the past image information data received by a terminal-side wireless communication circuit.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: April 16, 2024
    Assignee: FUJIFILM Corporation
    Inventor: Hiroshi Murakami
  • Patent number: 11944468
    Abstract: A material decomposition apparatus for performing decomposition of a material in an object. The apparatus includes a data storage section for storing correction data preliminarily generated by decomposing one of three or more materials into the other two materials, a data input section to which radiation data of the object is inputted, the radiation data being divided into a plurality of energy levels, and a decomposition processing section for repeatedly performing two-material decomposition for decomposition of the other two materials of the three or more materials using the radiation data at different energy levels and the correction data to perform decomposition of the inside of the object into the three or more materials.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: April 2, 2024
    Assignee: FUJIFILM HEALTHCARE CORPORATION
    Inventors: Shinichi Kojima, Kazuma Yokoi, Isao Takahashi, Fumito Watanabe, Fuyuhiko Teramoto, Taiga Gotou
  • Patent number: 11944491
    Abstract: An ultrasound probe comprising a housing, a transducer assembly operable to transmit ultrasonic energy towards a zone of the probe adapted to be acoustically coupled to an object or area of interest, a cooling system comprising a heat transfer device arranged to transfer heat generated by the transducer assembly to one or more regions or areas located outside such transducer assembly. The heat transfer device comprises graphene.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: April 2, 2024
    Assignee: Esaote S.p.A.
    Inventors: Lorenzo Spicci, Paolo Palchetti, Francesca Gambineri
  • Patent number: 11948247
    Abstract: A camera-based Transcranial Magnetic Stimulation (TMS) diagnosis and treatment head modeling system is provided and includes a 3D scanner, a positioning cap, and a smart terminal, where the 3D scanner and the smart terminal are electrically connected. A modeling method for the head modeling system includes: acquiring 3D image data of the head of a patient by a camera from different directions, and integrating the image data to obtain complete 3D image data; and then mapping, in combination with MNI brain space coordinates, a skull model obtained by brain 3D scanning in an MNI space to 3D head model data of the patient to obtain a head model highly matching the real head of the patient.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: April 2, 2024
    Assignee: WUHAN ZNION TECHNOLOGY CO., LTD
    Inventors: Cong Sun, Bo Wang, Shengan Cai
  • Patent number: 11944424
    Abstract: Methods and systems with 129Xe dynamic spectroscopy with a fitting function that includes one or more non-Lorentzians, optionally with a barrier Voigt, and signal processing for identifying cardiogenic oscillations for evaluating disease states, use in drug discovery or monitoring disease status.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: April 2, 2024
    Assignee: Duke University
    Inventors: Elianna Bier, Bastiaan Driehuys, Ziyi Wang, Sudarshan Rajagopal
  • Patent number: 11944499
    Abstract: A contrast element tracking method comprises obtaining a sequence of frames each comprising ultrasound or other medical imaging data representing an anatomical region of a human or animal subject at a respective different time; for each frame, identifying one or more portions of the ultrasound or other medical imaging data as single or multiple contrast element signal portions representative of a contrast element or plurality of contrast elements; assigning respective position data to each of the single contrast element signal portions and each of the multiple contrast element signal portions; and using a linking model that uses at least said assigned position data to link single or multiple contrast element signal portions represented in at least one of the frames to single or multiple contrast element signal portions represented in at least one other of the frames thereby to track movement of contrast elements through said region of the subject.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: April 2, 2024
    Assignee: Heriot-Watt University
    Inventors: Vassilis Sboros, Weiping Lu, Rhodri Wilson, Evangelos Kanoulas
  • Patent number: 11944416
    Abstract: Disclosed is a photoplethysmography (PPG) apparatus (100) for determining physiological changes, comprising: a light source to emit alight signal having a variable intensity dependent on a skin characteristic; first and second photodetectors (130) operable to detect a reflection of the light signal to provide a combined current signal; and a signal processing circuit operable to convert the current signal into a PPG signal for determining the physiological changes.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: April 2, 2024
    Assignee: Nitto Denko Corporation
    Inventors: Estanislao Glenn Bondice, Suppasit Chuwatsawat, Wiputpong Klinsukon, Somchai Baotong, Visit Thaveeprungsriporn
  • Patent number: 11938514
    Abstract: Transducer assembly transmits ultrasonic energy towards a zone acoustically coupled to an object or area of interest, and comprises a piezoelectric subassembly matching a curved support layer disposed behind said subassembly. Piezoelectric subassembly comprises piezoelectric elements and metal connections. Piezoelectric elements are disposed along a first azimuth direction to form parallel curved segments of piezoelectric elements extending in a second elevation direction, each being in contact with a corresponding metal connection extending in the elevation direction for transmitting/receiving electric signals to/from each piezoelectric segment.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: March 26, 2024
    Assignee: Esaote S.p.A.
    Inventors: Francesco Bertocci, Ramona De Luca