Patents Examined by Colin W Slifka
  • Patent number: 11691130
    Abstract: A catalyst for oxidative dehydrogenation (ODH) of ethane with an empirical formula Mo—V—Te—Nb—Pd—O produced using a process comprising impregnation of the Pd component on the surface of the catalyst following a calcination step using a Pd compound free of halogens. The resulting catalyst can be used in both diluted and undiluted ODH processes and shows higher than expected activity without any loss of selectivity.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: July 4, 2023
    Inventors: Vasily Simanzhenkov, Xiaoliang Gao, David Jeffrey Sullivan, Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina
  • Patent number: 11685699
    Abstract: An ignitor that includes at least one layer of silicon dioxide coating a silicon carbide material, methods of making and using the ignitor, and a kit that includes the ignitor are provided. The silicon dioxide coating is not intended to be removed prior to use. Rather, it is intended to remain on the ignitor during use.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: June 27, 2023
    Assignee: CoorsTek, Inc.
    Inventors: Michael J. Hanagan, Al Marshall
  • Patent number: 11673813
    Abstract: Methods and apparatus for producing a magnetic nanoparticle suitable for additive manufacturing techniques includes providing a solution having a plurality of metallic precursors to produce magnetic nanoparticles, a coordinating solvent, and a chelating agent. The solution is mixed and heated to grow nanoparticles wherein magnetic nanoparticles are formed. The solution is then cooled and a magnetic field is applied to the solution wherein ferrite nanoparticles are at least partially separated by size.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: June 13, 2023
    Assignee: VADIENT OPTICS, LLC
    Inventors: Peter G Hugger, Chad N Teters, Thomas L Allen, Ernst Adrian Henle, Peter J Polesnak
  • Patent number: 11673320
    Abstract: A three-dimensional object comprises stacked substrate layers infiltrated by a hardened material. Each substrate layer is a sheet-like structure that comprises fibers held together by a sodium silicate binder. The substrate layer material may be non-woven or woven. The substrate layer may be a non-woven fiber veil bound by a sodium silicate binder. The fibers may optionally include carbon fibers, ceramic fibers, polymer fibers, glass fibers, metal fibers, or a combination thereof.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: June 13, 2023
    Assignee: Impossible Objects, Inc.
    Inventors: Robert Swartz, Eugene Gore, Buckley Crist, Michael Vasquez, John Bayldon
  • Patent number: 11667584
    Abstract: Compounds are generally provided, which may be particularly used to form a layer in a coating system. In one embodiment, the compound may have the formula: AxBbLn1-x-bHf1-t-dTitDdMO6, where: A is Al, Ga, In, Sc, Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Fe, Cr, Co, Mn, Bi, or a mixture thereof; x is about 0.01 to about 0.99; b is 0 to about 0.5, with 1-x-b being 0 to about 0.99 such that Ln is present in the compound; Ln is a rare earth or a mixture thereof that is different than A; t is 0 to about 0.99; D is Zr, Ce, Ge, Si, or a mixture thereof; d is 0 to about 0.5; the sum of t and d is less than 1 such that Hf is present in the compound; and M is Ta, Nb, or a mixture thereof.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: June 6, 2023
    Assignee: General Electric Comapny
    Inventor: Glen Harold Kirby
  • Patent number: 11666890
    Abstract: A porous ceramic structure with low pressure loss and high catalytic performance is provided. The porous ceramic structure includes a porous structure body (i.e., honeycomb structure) composed primarily of cordierite, and manganese (Mn) and tungsten (W) that are fixedly attached to the honeycomb structure. Thus, pressure loss in the porous ceramic structure can be reduced, and an NO combustion temperature in the porous ceramic structure can be lowered. In other words, the aforementioned structure of the porous ceramic structure allows the porous ceramic structure to have low pressure loss and high catalytic performance.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: June 6, 2023
    Assignee: NGK INSULATORS, LTD.
    Inventors: Yunie Izumi, Kenichi Hidaka
  • Patent number: 11666880
    Abstract: Provided are a method of preparing a metal oxide-silica composite aerogel, and a metal oxide-silica composite aerogel having an excellent weight reduction property prepared by the method. The method includes a step of adding an acid catalyst to a first water glass solution to prepare an acidic water glass solution (step 1); a step of adding a metal ion solution to the acidic water glass solution to prepare a precursor solution (step 2); and a step of adding a second water glass solution to the precursor solution and performing a gelation reaction (step 3) to yield a metal oxide-silica composite wet gel, wherein, in steps 2 and 3, bubbling of an inert gas is performed during the adding of the metal ion solution or the second water glass solution, respectively.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: June 6, 2023
    Assignee: LG CHEM, LTD.
    Inventors: Jong Hun Kim, Je Kyun Lee
  • Patent number: 11660584
    Abstract: Provided is a catalyst for oxidative dehydrogenation, a method of preparing the catalyst, and a method of performing oxidative dehydrogenation using the catalyst. The catalyst for oxidative dehydrogenation has improved durability and fillability by including a porous support coated with a metal oxide (AB2O4) according to Equation 1: X wt %+Y wt %=100 wt %,??<Equation 1> wherein X is a content of AB2O4 and is 5 or more and less than 30, and Y is a content of the porous support and is more than 70 and 95 or less, wherein the metal oxide exhibits activity during oxidative dehydrogenation. Therefore, when the catalyst is used in oxidative dehydrogenation of butene, the conversion rate of butene and the selectivity and yield of butadiene may be greatly improved.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: May 30, 2023
    Assignee: LG CHEM, LTD.
    Inventors: Myung Ji Suh, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Ye Seul Hwang, Jun Kyu Han, Sun Hwan Hwang
  • Patent number: 11660582
    Abstract: The invention relates to a method for producing a pellet, in particular for a catalytic convertor and/or static mixer. The method comprises a trimming and/or deforming of at least one layer of metal foam material into a pellet shape.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: May 30, 2023
    Assignee: Alantum Europe GmbH
    Inventors: Byoungkwon Choi, Jongkwang Kim, Jungsuk Bae, Andreas Tillmann, Lars Torkuhl, Didier Béton, Robin Kolvenbach
  • Patent number: 11652207
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: May 16, 2023
    Assignee: A123 Systems LLC
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Patent number: 11648534
    Abstract: The present invention provides an oxidation catalyst composition suitable for at least partial conversion of gaseous hydrocarbon emissions, e.g., methane. The oxidation catalyst composition includes at least one platinum group metal (PGM) component supported onto a porous zirconia-containing material that provides an effect on hydrocarbon conversion activity. The porous zirconia-containing material is at least 90% by weight in the monoclinic phase. Furthermore, the PGM component can comprise at least one platinum group metal in the form of colloidally deposited nanoparticles. The oxidation catalyst composition can be used in the treatment of emissions from lean compressed natural gas engines.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: May 16, 2023
    Assignee: BASF CORPORATION
    Inventors: Xinyi Wei, Olga Gerlach, Emily Schulman, Andreas Sundermann, Stanley Roth, Limiao An
  • Patent number: 11643366
    Abstract: A large area sintering platform, system, and methodology. The system includes a convection oven with a projection window disposed within a top surface of the oven. A platform is disposed within the oven below the window at a spaced distance away from the window. A powder is positioned on top of the platform, with a thermocouple positioned within the powder on the platform. A high intensity projector moves in sync with the platform, and uses low intensities and long exposure times to project an image through the window onto the powder and sinter the powder to fabricate the desired model layer by layer.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: May 9, 2023
    Assignee: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Christopher Joseph Gardiner, Justin Nussbaum, Nathan Crane
  • Patent number: 11642667
    Abstract: The present disclosure relates to a multi-sandwich composite catalyst and a preparation method and application thereof. The present disclosure provides a preparation method of a multi-sandwich composite catalyst, comprises the following steps: sequentially depositing a first layer oxide, a first active metal, an oxide interlayer, a second active metal and a surface oxide on a template, and sequentially performing calcination and reduction, thereby obtaining a multi-sandwich composite catalyst; wherein the first active metal and the second active metal are different kinds of active metals. In the present disclosure, a multi-sandwich structure is formed by depositing the oxides and active metals alternately, so that the position and spacing distance of the active centers can be precisely controlled. The multi-sandwich composite catalyst prepared by the method provided described herein has a higher conversion than that of a catalyst without an interlayer when used for the catalytic reaction.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: May 9, 2023
    Assignee: Institute of Coal Chemistry, Chinese Academy of Sciences
    Inventors: Yong Qin, Bin Zhang, Huibin Wu, Haojie Liang
  • Patent number: 11639292
    Abstract: Particulate composite materials and devices comprising the same are provided.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: May 2, 2023
    Assignee: GROUP14 TECHNOLOGIES, INC.
    Inventors: Henry R. Costantino, Abirami Dhanabalan, Avery J. Sakshaug
  • Patent number: 11633787
    Abstract: A shaping device for producing a layered body by repeatedly performing a step of forming a powder layer and a step of fixing powder in at least a partial region of the powder layer includes a first liquid application unit configured to apply a first liquid including a binder for binding the powder, a second liquid application unit configured to apply a second liquid for suppressing a flow of the first liquid, and a control unit that controls the first liquid application unit and the second liquid application unit so that where the powder in a first region of the formed powder layer is to be fixed, the first liquid is applied to the first region and the second liquid is applied to a second region adjacent to the first region. The second liquid is a liquid having higher permeability to the powder layer than the first liquid.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: April 25, 2023
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Takaharu Aotani, Yohei Masada
  • Patent number: 11633723
    Abstract: A composition for exhaust gas purification containing Y—Mn—O and Al2O3 and having a specific surface area (SSA) retention satisfying inequality (1) SSA retention (%) >?61.54×(Y—Mn—O ratio)+75.55 and inequality (2) SSA retention (%) >45 (2), where SSA retention is represented by (SSA after aging)/(initial SSA)×100 (%). The SSA after aging and the initial SSA are as defined in the description. The Y—Mn—O ratio is a mass ratio of Y—Mn—O to the sum of Y—Mn—O and Al2O3 in the composition for exhaust gas purification, being represented by Y—Mn—O/(Y—Mn—O+Al2O3).
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: April 25, 2023
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Michitaka Yamaguchi, Satoshi Watanabe
  • Patent number: 11633790
    Abstract: An apparatus includes a control system that defines a test part having multiple features of multiple feature types. The control system controls an additive manufacturing (AM) machine to print multiple copies of the test part, with each copy being printed according to a respective set of values used as printing parameters. A measurement system obtains a computed tomography (CT) image of each of the copies of the test part. An analysis system, for each of the plurality of feature types, analyzes the CT images to identify a selected set of values for the printing parameters. The analysis system identifies a portion of the CT image related to a first feature and assesses its density based on an average grayscale value. The AM machine is then controlled to print production parts according to, for each feature type of the production parts, the selected set of values for the printing parameters.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: April 25, 2023
    Assignees: Carl Zeiss Industrial Metrology, LLC, UT-Battelle, LLC
    Inventors: Pradeep Bhattad, Paul Brackman, Curtis Frederick, Marcin B. Bauza, Edson Costa Santos, Ryan Dehoff, Alex Plotkowski, Aleksandr Lisovich, Jason James Tenboer
  • Patent number: 11634818
    Abstract: A surface treatment solution composition for forming an inorganic film, comprising: 10 to 30% by weight of a trivalent chromium compound containing chromium phosphate (A) and chromium nitrate (B) and satisfying a content ratio A/(A+B) of 0.3 to 0.6; 5 to 50% by weight of a silane compound; 0.2 to 3% by weight of a vanadium-based rust-inhibiting and corrosion-resisting agent; 0.5 to 5% by weight of a cobalt-based rust-inhibiting and corrosion-resisting agent; and 12 to 84.3% by weight of water, an alloyed hot-dip galvanized steel sheet surface-treated using the composition, and a method for manufacturing the alloyed hot-dip galvanized steel sheet, are provided, and the surface treatment solution composition containing the trivalent chromium compound has an excellent effect on corrosion resistance, blackening resistance, fuel resistance, weldability, and alkali resistance.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: April 25, 2023
    Assignee: POSCO CO., LTD
    Inventors: Soo-Hyoun Cho, Won-Ho Son
  • Patent number: 11628420
    Abstract: A powdered catalyst material on a titanium oxide basis. The powdered catalyst material includes a combined content of at least 90 wt.-% of a hydrated titanium oxide having the general formula TiO(2-x)(OH)2x, with 0<x?1, (calculated as TiO2), and a silicon dioxide and hydrated precursors of the silicon dioxide (calculated as SiO2). A weight ratio of TiO2/SiO2, determined for TiO2 and SiO2 respectively, is at least 3 and less than 30. The wt.-% is based on a total weight of the catalyst material after the catalyst material has been dried at 105° C. for at least 2 hours. The powdered catalyst material has a specific surface area of >300 m2/g and an isoelectric point of from 4.0 to 7.0.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: April 18, 2023
    Assignee: HUNTSMAN P&A GERMANY GMBH
    Inventors: Sonja Grothe, Tobias Thiede
  • Patent number: 11618613
    Abstract: A conditioning agent (typically for use in repairing a flaw in a glazing panel) is contained in a sealed container which is itself disposed internally of a flexible outer walled container. Pressure applied to the outer flexible walled container can cause release of the conditioning agent from the internal conditioning agent container. The conditioning agent preparation may comprise a hygroscopic solvent (such as acetone) combined with one or more primer additives to prime the surface of the glazing panel for repair.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: April 4, 2023
    Assignee: Belron International Limited
    Inventor: Paul Syfko