Patents Examined by Cory Eskridge
  • Patent number: 8916453
    Abstract: A semiconductor wafer includes a first main face and a second main face opposite to the first main face and a number of semiconductor chip regions. The wafer is diced along dicing streets to separate the semiconductor chip regions from each other. At least one metal layer is formed on the first main face of each one of the semiconductor chip regions.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: December 23, 2014
    Assignee: Infineon Technologies AG
    Inventors: Gopalakrishnan Trichy Rengarajan, Armin Tilke
  • Patent number: 8916440
    Abstract: Semiconductor structures and methods of manufacture are disclosed herein. Specifically, disclosed herein are methods of manufacturing a high-voltage metal-oxide-semiconductor field-effect transistor and respective structures. A method includes forming a field-effect transistor (FET) on a substrate in a FET region, forming a high-voltage FET (HVFET) on a dielectric stack over a over lightly-doped diffusion (LDD) drain in a HVFET region, and forming an NPN on the substrate in an NPN region.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: December 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: William F. Clark, Jr., Qizhi Liu, John J. Pekarik, Yun Shi, Yanli Zhang
  • Patent number: 8907464
    Abstract: A three dimensional (3D) package includes a helix substrate having a columnar part including a top surface, a bottom surface and a sidewall, and a plurality of steps arranged along the sidewall of the columnar part in the form of a helix. Semiconductor integrated circuits (dies) may be attached on supporting surfaces of the steps. The columnar part, the steps and the dies can be covered with a mold compound. I/Os are formed at either the sides of the steps and/or the top and/or bottom of the columnar part.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: December 9, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Huan Wang, Meiquan Huang, Hejin Liu
  • Patent number: 8901636
    Abstract: A three-dimensional semiconductor device and a method of fabricating the same, the device including a lower insulating layer on a top surface of a substrate; an electrode structure sequentially stacked on the lower insulating layer, the electrode structure including conductive patterns; a semiconductor pattern penetrating the electrode structure and the lower insulating layer and being connected to the substrate; and a vertical insulating layer interposed between the semiconductor pattern and the electrode structure, the vertical insulating layer crossing the conductive patterns in a vertical direction and being in contact with a top surface of the lower insulating layer.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: December 2, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kil-Su Jeong
  • Patent number: 8895406
    Abstract: Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: November 25, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Ralph G. Nuzzo, Matthew Meitl, Heung Cho Ko, Jongseung Yoon, Etienne Menard, Alfred J. Baca
  • Patent number: 8895405
    Abstract: A method of manufacturing a semiconductor device includes forming a silicon nitride film having an opening portion on a semiconductor substrate, forming a silicon oxide film on the silicon nitride film and on a side face of the opening portion, performing an etching treatment to the silicon oxide film so that a sidewall is formed on the side face of the opening portion, forming a trench on the semiconductor substrate with use of the sidewall and the silicon nitride film as a mask, and forming an insulating layer in the trench. The step of forming the silicon oxide film includes oxidizing the silicon nitride film with a plasma oxidation method or a radical oxidation method.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 25, 2014
    Assignee: Spansion LLC
    Inventors: Fumihiko Inoue, Yukio Hayakawa
  • Patent number: 8896126
    Abstract: An integrated circuit package includes a first memory die having a first set of connections, a second memory die arranged adjacent to the first memory die, the second memory die having a second set of connections, a first substrate having a first opening and a second opening, the first substrate having a third set of connections to connect to the first set of connections of the first memory die via the first opening and a fourth set of connections to connect to the second set of connections of the second memory die via the second opening, and a second substrate having a first integrated circuit disposed thereon. The first substrate is connected to the second substrate with the first integrated circuit disposed between the first substrate and second substrate.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: November 25, 2014
    Assignee: Marvell World Trade Ltd.
    Inventor: Sehat Setardja
  • Patent number: 8890212
    Abstract: According to example embodiments, a normally-off high electron mobility transistor (HEMT) includes: a channel layer having a first nitride semiconductor, a channel supply layer on the channel layer, a source electrode and a drain electrode at sides of the channel supply layer, a depletion-forming layer on the channel supply layer, a gate insulating layer on the depletion-forming layer, and a gate electrode on the gate insulation layer. The channel supply layer includes a second nitride semiconductor and is configured to induce a two-dimensional electron gas (2DEG) in the channel layer. The depletion-forming layer is configured has at least two thicknesses and is configured to form a depletion region in at least a partial region of the 2DEG. The gate electrode contacts the depletion-forming layer.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-chul Jeon, Young-hwan Park, Jae-joon Oh, Kyoung-yeon Kim, Joon-yong Kim, Ki-yeol Park, Jai-kwang Shin, Sun-kyu Hwang
  • Patent number: 8889532
    Abstract: In one embodiment, a vertical insulated-gate field effect transistor includes a shield electrode formed in trench structure within a semiconductor material. A gate electrode is isolated from the semiconductor material using gate insulating layers. Before the shield electrode is formed, spacer layers can be used form shield insulating layers along portions of the trench structure. The shield insulating layers are thicker than the gate insulating layers. In another embodiment, the shield insulating layers have variable thickness.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: November 18, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Peter A. Burke, Gordon M. Grivna, Balaji Padmanabhan, Prasad Venkatraman
  • Patent number: 8878336
    Abstract: A fuse includes a first conductor, an insulating film on the first conductor, a second conductor on the insulating film, a first plug coupled to the first conductor, a second plug and a third plug each coupled to the second conductor, and a cover film formed on the second conductor and having tensile strength.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: November 4, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Makoto Yasuda, Kazuyoshi Arimura, Yoshiharu Kato
  • Patent number: 8872151
    Abstract: This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: October 28, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Michael Miller, Tony P. Chiang, Xiying Costa, Tanmay Kumar, Prashant B Phatak, April Schricker
  • Patent number: 8866171
    Abstract: To provide a light-emitting element or a light-emitting device in which power is not consumed wastefully even if a short-circuit failure occurs. The present invention focuses on heat generated due to a short-circuit failure which occurs in a light-emitting element. A fusible alloy which is melted at temperature T2 by heat generated due to the short-circuit failure when the short-circuit failure occurs is used for at least one of a pair of electrodes in a light-emitting element, and a layer containing an organic composition which is melted at temperature T1 is formed on a surface of the electrode opposite to a surface facing the other electrode. The present inventors have reached a structure in which the temperature T2 is lower than temperature T3 at which the light-emitting element is damaged and the temperature T1 is lower than the temperature T2, and this structure can achieve the objects.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: October 21, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuo Nakamura, Satoshi Seo, Masaaki Hiroki
  • Patent number: 8865516
    Abstract: The present invention provides an oxide semiconductor capable of achieving a thin film transistor having stable transistor characteristics, a thin film transistor having a channel layer formed of the oxide semiconductor and a production method thereof, and a display device equipped with the thin film transistor. The oxide semiconductor of the present invention is an oxide semiconductor for a thin film transistor. The oxide semiconductor includes indium, gallium, zinc, and oxygen as constituent atoms, and the oxygen content of the oxide semiconductor is 87% to 95% of the stoichiometric condition set as 100%, in terms of atomic units.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: October 21, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshifumi Ohta, Go Mori, Hirohiko Nishiki, Yoshimasa Chikama, Tetsuya Aita, Masahiko Suzuki, Okifumi Nakagawa, Michiko Takei, Yoshiyuki Harumoto, Takeshi Hara
  • Patent number: 8865521
    Abstract: A 3D semiconductor package using an interposer is provided. In an embodiment, an interposer is provided having a first die electrically coupled to a first side of the interposer and a second die electrically coupled to a second side of the interposer. The interposer is electrically coupled to an underlying substrate, such as a packaging substrate, a high-density interconnect, a printed circuit board, or the like. The substrate has a cavity such that the second die is positioned within the cavity. The use of a cavity may allow smaller conductive bumps to be used, thereby allowing a higher number of conductive bumps to be used. A heat sink may be placed within the cavity to aid in the dissipation of the heat from the second die.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: October 21, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shin-Puu Jeng, Kim Hong Chen, Shang-Yun Hou, Chao-Wen Shih, Cheng-Chieh Hsieh, Chen-Hua Yu
  • Patent number: 8860073
    Abstract: A light-emitting device package may include a pre-mold and a molding member. The pre-mold may include an upper body having a inclined (e.g., concavely) plane from which a plurality of vertical holes passing through the upper body are formed and a lower body having an upper surface that meets the inclined (e.g., concavely) plane under the upper body to form a concave unit. The molding member may fill the plurality of vertical holes and the concave unit.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: October 14, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hun-yong Park, Choo-ho Kim, Won-ho Jung, Jin-ki Hong
  • Patent number: 8852959
    Abstract: A integrated circuit and methods for fabricating the circuit are provided. The circuit integrates at least one circuit element formed from a material that is superconducting at temperatures less than one hundred milliKelvin and at least one resistor connected to the circuit element. The resistor is formed from an alloy of transition metals that is resistive at temperatures less than one hundred milliKelvin.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: October 7, 2014
    Assignee: Northrup Grumman Systems Corporation
    Inventors: John J. Talvacchio, Erica C. Folk, Sean R. McLaughlin, David J. Phillips
  • Patent number: 8853016
    Abstract: A double gate thin-film transistor (TFT), and an organic light-emitting diode (OLED) display apparatus including the double gate TFT, includes a double gate thin-film transistor (TFT) including: a first gate electrode on a substrate; an active layer on the first gate electrode; source and drain electrodes on the active layer; a planarization layer on the substrate and the source and drain electrodes, and having an opening corresponding to the active layer; and a second gate electrode in the opening.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: October 7, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hye-Hyang Park, Ki-Ju Im, Yong-Sung Park
  • Patent number: 8847410
    Abstract: A semiconductor device includes a semiconductor chip, a die pad including an obverse surface on which the semiconductor chip is bonded, a lead spaced apart from the die pad, a bonding wire electrically connecting the semiconductor chip and the lead to each other, and a resin package that seals the semiconductor chip and the bonding wire. The bonding wire includes a first bond portion press-bonded to the semiconductor chip by ball bonding, a second bond portion press bonded to the lead by stitch bonding, a landing portion extending from the second bond portion toward the die pad and formed in contact with an obverse surface of the lead, and a loop extending obliquely upward from the landing portion toward the semiconductor chip.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 30, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Kosuke Miyoshi, Kinya Sakoda, Toshikuni Shinohara
  • Patent number: 8829599
    Abstract: In a semiconductor memory device, a plurality of control gates is stacked in a first region and a second region of a substrate. A plurality of interlayer insulating layers is stacked in a portion of the second region of the substrate. Each interlayer insulating layer is formed at the same level as a corresponding one of the control gates. A plurality of sub-control gates is stacked in the first and second regions region of the substrate and interposed between the control gates and the interlayer insulating layers. A common node penetrates the interlayer insulating layers and the sub-control gates.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: September 9, 2014
    Assignee: SK Hynix Inc.
    Inventor: Young Soo Ahn
  • Patent number: 8823098
    Abstract: The invention discloses a manufacture method and structure of a power transistor, comprising a lower electrode, a substrate, a drift region, two first conductive regions, two second conductive regions, two gate units, an isolation structure and an upper electrode. The two second conductive region are between the two first conductive regions and the drift region; the two gate units are on the two second conductive regions; the isolation structure covers the two gate units; the upper electrode covers the isolation structure and connects to the two first conductive regions and the two second conductive regions electrically. When the substrate is of the first conductive type, the structure can be used as MOSFET. When the substrate is of the second conductive type, the structure can be used as IGBT. This structure has a small gate electrode area, which leads to less Qg, Qgd and Rdson and improves device performance.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: September 2, 2014
    Assignee: Wuxi Versine Semiconductor Corp. Ltd.
    Inventors: Qin Huang, Yuming Bai