Patents Examined by Cynthia B. Wilder
  • Patent number: 11970747
    Abstract: Disclosed in the present invention are a primer-probe combination and a kit for vaginal microecosystem detection, wherein the primer-probe combination comprises primers and probes for target gene detection against Lactobacillus crispatus (LC), Lactobacillus gasseri (LG), Lactobacillus jensenii (LJ), Lactobacillus iners (LI), Gardnerella vaginalis (GV), Candida albicans (CA) and Trichomonas vaginalis (TV), and the probes are used for melting curve analysis. The kit comprises the primer-probe combination. The combination of specific primers and probes enables effective amplification of specific target genes of the above different microorganisms and melting curve analysis performed on the amplified products thereof, making detection of the above seven microorganisms in a single tube possible, thus achieving the advantages of high specificity, short time consuming, high sensitivity, comprehensive coverage of detection sites, etc.
    Type: Grant
    Filed: January 10, 2023
    Date of Patent: April 30, 2024
    Assignee: BEIJING ORIGIN-POLY BIO-TEC CO., LTD.
    Inventors: Linhai Wang, Pei Liu
  • Patent number: 11959142
    Abstract: Provided herein are methods of detecting circulating tumor DNA, cancer cell mutations, and/or cancer cells harboring one or more cancer cell mutations. In some embodiments, methods provided herein include detecting one or more genetic alterations in cell-free DNA. In some embodiments, methods provided herein for detecting one or more genetic alterations in cell-free DNA can be performed when the subject is not known to harbor a cancer cell and/or a cancer cell mutation (e.g., when the subject is not known to harbor a cancer cell having the cancer cell mutation).
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: April 16, 2024
    Assignee: The Johns Hopkins University
    Inventors: Victor Velculescu, Jillian A. Phallen
  • Patent number: 11939623
    Abstract: A method of use and reagent kit for nucleic acid stabilization and room temperature transport of SARS-CoV-2 and other respiratory viruses, followed by rapid identification are disclosed. Using the methods and compositions herein, molecular diagnostics or detection of SARS-CoV-2 and other respiratory viruses from the biological sample is performed without extraction or purification of viral DNA or RNA.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: March 26, 2024
    Assignee: GenoSUR, LLC
    Inventors: Matías Ricardo Gutiérrez Mostafá, Chantal Loretto Márquez Badilla, Ana Cecilia Morán
  • Patent number: 11932911
    Abstract: Provided herein are compositions and methods useful for the detection of MTB. In particular, provided herein are kits, reagents, reaction mixtures, and methods involving such for nucleic acid amplification and detection procedures, which specifically and sensitively detect MTB in samples.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: March 19, 2024
    Assignee: Abbott Molecular, Inc.
    Inventors: Ning Tang, Gregor Leckie, Vihanga Pahalawatta, Andrea Frank, John Lampinen
  • Patent number: 11919006
    Abstract: A generic point of care based portable device and method thereof as a platform technology for detecting pathogenic infection via nucleic acid based testing achieving sample-to-result integration, comprising the following interconnected stand-alone modules: a thermal unit for executing piece-wise isothermal reactions in a pre-programmable concomitant fashion without necessitating in-between operative intervention; a colorimetric detection unit seamlessly interfaced with smartphone-app based analytics for detecting the target analyte.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: March 5, 2024
    Assignee: INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR
    Inventors: Nandita Kedia, Sujay Kumar Biswas, Saptarshi Banerjee, Aditya Bandopadhyay, Arindam Mondal, Suman Chakraborty
  • Patent number: 11913083
    Abstract: A real time Taq-Man PCR assay for detecting multiple serotypes of human papillomavirus (HPV) wherein the number of serotypes detected exceeds the number of colorimetric channels for detection. A biological sample is combined with three oligonucleotide primer/probe sets such that the probes and primers anneal to a target sequence. Each primer/probe set is at least preferential for a specific serotype of an organism. The first and second primer/probe sets are degenerate with respect to each other. The third primer/probe set is not degenerate with respect to the first and second primer/probe sets and discriminates for a third serotype. The third primer/probe set has a signal moiety that emits signal at a wavelength that is the same or different from the wavelength emitted by the signal moiety of the degenerate primer/probe set probes. The target sequences, if present, are amplified and detected.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: February 27, 2024
    Assignee: Becton, Dickinson and Company
    Inventors: Chi Chen, Hugh J. Peck, Michael Porter, Gregory A. Richart, Ray A. McMillian
  • Patent number: 11913065
    Abstract: The present disclosure provides a system and method for the detection of rare mutations and copy number variations in cell free polynucleotides. Generally, the systems and methods comprise sample preparation, or the extraction and isolation of cell free polynucleotide sequences from a bodily fluid; subsequent sequencing of cell free polynucleotides by techniques known in the art; and application of bioinformatics tools to detect rare mutations and copy number variations as compared to a reference. The systems and methods also may contain a database or collection of different rare mutations or copy number variation profiles of different diseases, to be used as additional references in aiding detection of rare mutations, copy number variation profiling or general genetic profiling of a disease.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: February 27, 2024
    Assignee: Guardent Health, Inc.
    Inventors: AmirAli Talasaz, Stefanie Ann Ward Mortimer
  • Patent number: 11913071
    Abstract: Disclosed herein, inter alia, are substrates, kits, and efficient methods of preparing and sequencing two or more regions of a double-stranded polynucleotide.
    Type: Grant
    Filed: January 13, 2023
    Date of Patent: February 27, 2024
    Assignee: Singular Genomics Systems, Inc.
    Inventors: Daan Witters, Eli N. Glezer, Allen Lipson
  • Patent number: 11913082
    Abstract: Methods are provided for a sensitive and specific assay for the determination of viral load and genotyping of RSV in a biological sample. Compositions and kits for use in the methods also are provided, including optimized primers for the amplification of and detection of the RSV open reading frames from subtypes A and B, and probes for distinguishing between the subtypes. Also provided are methods for amplifying and sequencing an open reading from of an RSV F protein, and compositions and kits for use in the methods.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: February 27, 2024
    Assignee: Laboratory Corporation of America Holdings
    Inventor: Justin Philip De La Cruz
  • Patent number: 11913070
    Abstract: The present disclosure provides devices, systems, and methods related to sequencing a biopolymer. In particular, the present disclosure provides methods of obtaining a bioelectronic signature based on current fluctuations that correspond to the activity of an enzyme-of-interest. As described herein, certain aspects of the bioelectronic signature can be used to determine the sequence of a biopolymer.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: February 27, 2024
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventor: Stuart Lindsay
  • Patent number: 11905553
    Abstract: Provided herein are compositions and methods for accurate and scalable Primary Template-Directed Amplification (PTA) nucleic acid amplification and sequencing methods, and their applications for research, diagnostics, and treatment.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: February 20, 2024
    Assignee: ST. JUDE CHILDREN'S RESEARCH HOSPITAL, INC.
    Inventors: Charles Gawad, John Easton, Veronica Gonzalez-Pena
  • Patent number: 11898200
    Abstract: The present disclosure discloses a method for detecting single strand breaks (SSBs) in DNA based on the following steps. First, DNA of interest is fragmented with a method that generates 3? ends that cannot be tailed. Second, the available 3? ends of the fragmented DNA corresponding to the pre-existing breaks are tailed. Third, SSBs are captured and their positions are identified genome-wide based on the following steps: (1) the tailed fragments are linearly amplified using a chimeric 5?-DNA-RNA-3? primer; (2) the products of primer extension are tailed at the 3? ends; (3) the desired products are amplified by PCR with oligonucleotides containing Illumina® adaptor sequences complementary to both tails and subjected to next-generation sequencing (NGS); 4) finally, positions of SSBs are revealed through the analysis of sequencing results.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: February 13, 2024
    Assignee: Huaqiao University
    Inventors: Philipp Kapranov, Huifen Cao, Lorena Salazar-García, Fan Gao, Dongyang Xu, Ye Cai, Xueer Han, Fang Wang, Lu Tang
  • Patent number: 11866774
    Abstract: Devices, containers, and methods are provided for performing biological analysis in a closed environment. Illustrative biological analyses include high density nucleic acid amplification and detection and immuno-PCR.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: January 9, 2024
    Assignee: BioFire Diagnostics, LLC
    Inventors: Kirk M. Ririe, Mark Aaron Poritz, Randy P. Rasmussen
  • Patent number: 11859245
    Abstract: A primer set for detecting telomerase activity, the primer set including a first primer set or a second primer set. The first primer set includes: an upstream primer selected from MTS; and a downstream primer selected from the group consisting of ACX-M4, Beacon ACX62-2C, and Beacon ACX62-10. The second primer set includes: an upstream primer selected from STS or CTS; and a downstream primer selected from the group consisting of ACX, CXT, ACX-M4, Beacon ACX62-2C, or Beacon ACX62-10. The sequences of the primers ACX, CXT, ACX-M4, Beacon ACX62-2C, Beacon ACX62-10, STS, CTS and MTS are shown as SEQ ID NOs: 1 to 8, respectively.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: January 2, 2024
    Assignee: INSTITUTE OF ZOOLOGY, CHINESE ACADEMY OF SCIENCES
    Inventors: Zheng Tan, Kewei Zheng, Yuhua Hao
  • Patent number: 11845981
    Abstract: A minimal-copy-ratio of templates is a problem in detecting early stage cancer where minimal copies of somatic cancer-specific mutations are targeted in the presence of large copies of wildtype genome DNA, commonly a 1/10,000 or even less minimal-copy-ratios between the mutant target and wildtype control templates. To overcome this problem, delayed pyrophosphorolysis activated polymerization (delayed-PAP) was developed which can delay product accumulation of the wildtype control to a much later time or cycle, such as by 15 cycles or by 30,000 folds. In the multiplex format, delayed-PAP is particularly useful to amplify not only the wildtype control but also mutant target templates accurately and consistently in the minimal-copy-ratio situation.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: December 19, 2023
    Inventors: Shaofeng Ding, Qiang Liu
  • Patent number: 11840687
    Abstract: Provided herein are methods, compositions, and kits for removing a portion of a sequence in a member of a nucleic acid library.
    Type: Grant
    Filed: May 18, 2023
    Date of Patent: December 12, 2023
    Assignee: 10x Genomics, Inc.
    Inventors: Caroline Julie Gallant, Marlon Stoeckius, Katherine Pfeiffer
  • Patent number: 11840729
    Abstract: A portable genome sequencing and genotyping device includes a sample processing module, a sequencing module, an analyzing module, and a communication module. The sample processing module is configured to process a sample so as to generate at least one DNA segment of the sample. The sequencing module is connected to the sample processing module, and is configured to generate a number of base sequences corresponding to the at least one DNA segment. The analyzing module is coupled to the sequencing module, and is configured to generate a genotyping analysis result based on the base sequences. The communication module is configured to receive the genotyping analysis result and transmit the genotyping analysis result to a user terminal.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: December 12, 2023
    Assignees: NATIONAL CHIAO TUNG UNIVERSITY, NATIONAL TAIWAN UNIVERSITY
    Inventors: Jui-Hung Hung, Chia-Hsiang Yang
  • Patent number: 11834706
    Abstract: Disclosed in the present invention are a digital nucleic acid amplification testing method and an integrated detection system based on CRISPR-Cas technology. The integrated detection system comprises an integrated reaction chip, a temperature control module, a light source and an optical signal detector. The method comprises: uniformly dividing a nucleic acid amplification reagent into amplification micro-droplets, then mixing the amplification micro-droplets after digital nucleic acid amplification with detection micro-droplets containing CRISPR-Cas detection reagent to perform a CRISPR reaction, and when the reaction is finished, detecting an optical signal to realize high-specificity testing of a target object, and the concentration or copy number of nucleic acid molecules in a sample to be tested is also obtained, and high-sensitivity absolute quantitative testing of a target object is realized.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: December 5, 2023
    Assignee: ZHEJIANG UNIVERSITY
    Inventors: Zunzhong Ye, Cui Wu, Yibin Ying
  • Patent number: 11827940
    Abstract: Disclosed herein is a method which includes extracting genomic deoxyribonucleic acid (DNA) at locations at or near cancer hotspots from a subject, modifying Tier-1 5hmC on the DNA to a modified 5hmC, detecting and identifying the presence or absence of the modified 5hmC, quantifying the detected and identified modified 5hmC; and providing a report comprising a score, wherein the score is indicative of the presence of cancer.
    Type: Grant
    Filed: October 7, 2022
    Date of Patent: November 28, 2023
    Inventors: Yabin Lu, Michael Jinyang Lu
  • Patent number: 11827942
    Abstract: Disclosed herein are methods, compositions, and devices for use in the early detection of cancer. The methods include preparing cell-free nucleic acid molecules from a subject for sequencing, sequencing a panel of regions in the cell-free nucleic acid molecules, and detecting one or more markers that are indicative of a cancer.
    Type: Grant
    Filed: January 19, 2023
    Date of Patent: November 28, 2023
    Assignee: Guardant Health, Inc.
    Inventors: Stefanie Ann Ward Mortimer, AmirAli Talasaz, Darya Chudova, Helmy Eltoukhy