Patents Examined by Cynthia B. Wilder
  • Patent number: 11260387
    Abstract: Methods of determining methylation of DNA are provided.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: March 1, 2022
    Assignee: CEPHEID
    Inventors: Edwin Wei-Lung Lai, Andrew Kohlway, Reuel Van Atta, Russell Higuchi, Alexander A. Gall, Kriszten Kocmond
  • Patent number: 11242556
    Abstract: The present disclosure provides a system and method for the detection of rare mutations and copy number variations in cell free polynucleotides. Generally, the systems and methods comprise sample preparation, or the extraction and isolation of cell free polynucleotide sequences from a bodily fluid; subsequent sequencing of cell free polynucleotides by techniques known in the art; and application of bioinformatics tools to detect rare mutations and copy number variations as compared to a reference. The systems and methods also may contain a database or collection of different rare mutations or copy number variation profiles of different diseases, to be used as additional references in aiding detection of rare mutations, copy number variation profiling or general genetic profiling of a disease.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: February 8, 2022
    Assignee: GUARDANT HEALTH, INC.
    Inventors: AmirAli Talasaz, Stefanie Ann Ward Mortimer
  • Patent number: 11225684
    Abstract: The present invention relates to a method for genotyping single nucleotide polymorphisms (SNPs) using a lateral flow test device. The invention also relates to a kit comprising said lateral flow test device and also to the use thereof for genotyping single nucleotide polymorphisms (SNPs).
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: January 18, 2022
    Assignee: ETABLISSEMENT FRANCAIS DU SANG
    Inventors: Jean-Charles Bres, Julien Gomez-Martinez
  • Patent number: 11214830
    Abstract: Methods, devices, and systems for performing intermittent detection during analytical reactions are provided. Such methods facilitate collection of reaction data from disparate reaction times. Further, such methods are useful for reducing photo-induced damage of one or more reactants in an illuminated analytical reaction at a given reaction time. In preferred embodiments, the reaction mixture is subjected to at least one illuminated and non-illuminated period and allowed to proceed such that the time in which the reaction mixture is illuminated is less than a photo-induced damage threshold period.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: January 4, 2022
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Jon Sorenson, Kenneth Mark Maxham, John Eid
  • Patent number: 11214794
    Abstract: The invention provides methods, compositions, kits and devices for the detection of target molecules. In some embodiments, the invention allows for multiplexed target molecule detection.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: January 4, 2022
    Assignee: Roche Sequencing Solutions, Inc.
    Inventor: Garry P. Nolan
  • Patent number: 11208679
    Abstract: The invention provides a method for validating patient-specific oligos using spike-in sequences.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: December 28, 2021
    Assignee: THE TRANSLATIONAL GENOMICS RESEARCH INSTITUTE
    Inventors: Timothy K. McDaniel, Muhammed Murtaza
  • Patent number: 11208689
    Abstract: The invention relates to a method for enriching a target polynucleotide sequence containing a genetic variation said method comprising: (a) providing two primers targeted to said target polynucleotide sequence; (b) providing a target specific xenonucleic acid clamp oligomer specific for a wildtype polynucleotide sequence; (c) generating multiple amplicons using PCR under specific temperature cycling conditions; and (d) detecting said amplicons. We introduce a novel molecule, Xenonucleic Acid (XNA) for the NGS library preparation. XNA is able to selectively suppress amplification of DNA with wild type alleles and amplify DNA containing mutant alleles. Mutants with low allelic frequency will be easily detectable without deep sequencing after enrichment by adding XNA in multiplex PCR. The 17 actionable mutants related to lung or colorectal cancer diseases at different variant allelic frequency (VAF) % were investigated. Clinical sensitivity is significantly improved with XNA in various types of samples.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: December 28, 2021
    Inventors: Michael J Powell, Aiguo Zhang, Michael Y Sha, Ke Zhan
  • Patent number: 11203778
    Abstract: Provided are methods and systems for detecting formation of nucleotide-specific ternary complexes comprising a DNA polymerase, a nucleic acid, and a nucleotide complementary to the templated base of the primed template nucleic acid. The methods and systems facilitate determination of the next correct nucleotide without requiring chemical incorporation of the nucleotide into the primer. These results can even be achieved in procedures employing unlabeled, native nucleotides.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: December 21, 2021
    Assignee: OMNIOME, INC.
    Inventors: Pinar Iyidogan, Kandaswamy Vijayan
  • Patent number: 11203779
    Abstract: Provided are methods and systems for reducing the time needed for sequencing nucleic acids. The approach relies on detecting formation of nucleotide-specific ternary complexes comprising a polymerase (e.g., a DNA polymerizing enzyme), a primed template nucleic acid molecule, and a nucleotide complementary to the templated base of the primed template nucleic acid. The methods and systems facilitate determination of the next correct nucleotide, as well as the subsequent next correct nucleotide from a cycle of examining four different nucleotides without requiring chemical incorporation of any nucleotide into the primer.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: December 21, 2021
    Assignee: OMNIONIE, INC.
    Inventors: Pinar Iyidogan, Kandaswamy Vijayan
  • Patent number: 11198913
    Abstract: Provided are compositions, kits, and methods for the identification of Listeria. In certain aspects and embodiments, the compositions, kits, and methods may provide improvements in relation to specificity, sensitivity, and speed of detection.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: December 14, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Michael R. Reshatoff, Kristin W. Livezey, James J. Hogan
  • Patent number: 11186880
    Abstract: Systems and methods to assess the health of various microbiomes and to identity species therein are disclosed. Described assessments and identifications can inform treatment decisions if a microbiome is determined to have a less than optimal balance of bacterial species within it; the presence of one or more negative species; and/or the absence of one or more positive species.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: November 30, 2021
    Assignee: Wayne State University
    Inventors: Robert A. Akins, Jack D. Sobel
  • Patent number: 11186857
    Abstract: The invention relates to a method for modifying a template double stranded polynucleotide, especially for characterisation using nanopore sequencing. The method produces from the template a plurality of modified double stranded polynucleotides. These modified polynucleotides can then be characterised.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: November 30, 2021
    Assignee: Oxford Nanopore Technologies PLC
    Inventors: David Jackson Stoddart, James White
  • Patent number: 11186867
    Abstract: Disclosed is an enhanced method for rapid and cost-effective analysis of sequences of a microorganism by semi-conductor sequencing, preferably ion-torrent sequencing. This method provides for full length analysis and of multiple areas (e.g. genes) of multiple genomes. These methods identify genetic mutations of a particular gene that are responsible for conferring resistance or sensitivity to an antibiotic or other chemical compound. Multiple different species, strains and/or serotypes of a particular organism are rapidly and efficiently screened and mutations identified along with the complete genome of an organism. By selecting primers pairs of similar size and GC content that produce amplicons with sequences spanning the entire genome, a single PCR reaction analyzed by ion torrent methodology can determine the sequence of a complete genome. Methods are useful to sequences the genomes of viral agents, such as influenza virus, and bacterial agents, such as tuberculosis bacteria.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: November 30, 2021
    Assignee: Longhorn Vaccines and Diagnostics, LLC
    Inventors: Luke T. Daum, Gerald W. Fischer
  • Patent number: 11180749
    Abstract: A method for separating a target allele from a mixture of nucleic acids by (a) providing a mixture of nucleic acids in fluidic contact with a stabilized ternary complex that is attached to a solid support, wherein the stabilized ternary complex includes a polymerase, primed nucleic acid template, and next correct nucleotide, wherein the template has a target allele, wherein the next correct nucleotide is a cognate nucleotide for the target allele, and wherein the stabilized ternary complex is attached to the solid support via a linkage between the polymerase and the solid support or via a linkage between the next correct nucleotide and the solid support; and (b) separating the solid support from the mixture of nucleic acids, thereby separating the target allele from the mixture of nucleic acids.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: November 23, 2021
    Assignee: OMNIOME, INC.
    Inventors: Corey M. Dambacher, Eugene Tu
  • Patent number: 11168357
    Abstract: The present disclosure provides compositions, methods and kits for Omega amplification technologies. In addition, the present disclosure provides compositions, methods and kits for universal FQ probe and for G-quadruplex detection methods for use in isothermal amplification technologies.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: November 9, 2021
    Assignee: Atila Biosystems, Inc.
    Inventors: Youxiang Wang, Xin Chen, Rong Wang, Zhijie Yang, Yu Zhao
  • Patent number: 11168359
    Abstract: Disclosed herein are methods and compositions for determining the copy number of a first target nucleic acid as compared to the copy number of a second target nucleic acid in a single well with a single detection label. For example, disclosed herein are methods and compositions for determining the copy number of a first target nucleic acid as compared to the copy number of a second target nucleic acid by a monochrome multiplex quantitative PCR (MMQPCR) in a single well with a single detection label.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: November 9, 2021
    Assignee: University of Utah Research Foundation
    Inventor: Richard M. Cawthon
  • Patent number: 11168351
    Abstract: A composition and method for preserving a urine sample and a preservative delivery vessel are disclosed wherein treatment of the urine sample aids in preserving circulating cell-free nucleic acids in urine over a wide range of dilution ratios within temperature fluctuations that can occur during urine sample handling, storage and transportation. The urine sample preservation composition and method and preservative delivery vessel provide a method for obtaining high quality stabilized urinary cell-free nucleic acids for clinical diagnostics development and application.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: November 9, 2021
    Assignee: STRECK, INC.
    Inventors: Bradford A. Hunsley, Jianbing Qin
  • Patent number: 11161087
    Abstract: The invention relates to methods of tagging analytes in a sample.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: November 2, 2021
    Assignee: Lineage Biosciences, Inc.
    Inventors: Hei-Mun Christina Fan, Edward A. Hutchins
  • Patent number: 11162137
    Abstract: Various embodiments of the teachings relate to a system or method for sample preparation or analysis in biochemical or molecular biology procedures. The sample preparation can involve small volume processed in discrete portions or segments or slugs, herein referred to as discrete volumes. A molecular biology procedure can be nucleic acid analysis. Nucleic acid analysis can be an integrated DNA amplification/DNA sequencing procedure.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: November 2, 2021
    Assignee: APPLIED BIOSYSTEMS LLC
    Inventors: Linda G. Lee, Sam L. Woo, Congcong Ma, Richard T. Reel, Mark F. Oldham, David M. Cox, Benjamin G. Schroeder, Jon M. Sorenson, Willy Wiyatno
  • Patent number: 11162145
    Abstract: The invention provides a lysis reagent for lysing red blood cells, thereby releasing a target, such as RNA from a parasitic organism, in a form suitable for analysis. The reagent includes at least ammonium chloride and an anionic detergent, and may include an anti-coagulant. The reagent serves to lyse red blood cells, protect the released target from degradation in the lysate, and is compatible with subsequent steps for analysis of the target such as target capture, amplification, detection, or sequencing.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: November 2, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Jijumon Chelliserry, Kui Gao, Jeffrey M. Linnen