Patents Examined by D. L. Jones
  • Patent number: 11511001
    Abstract: Radiolabeled anti-LAG3 antibodies and their use in immuno-PET imaging are provided herein. Included are methods of detecting the presence of LAG3 proteins in a patient or sample.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: November 29, 2022
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Marcus Kelly, Dangshe Ma, William Olson, Gavin Thurston, Richard Tavare
  • Patent number: 11497821
    Abstract: The present disclosure relates to a method for labeling a biomolecule, a fluorescent dye, or a nanoparticle compound with a radioisotope, comprising: (a) providing a cyclooctyne compound represented by the following formula (I) comprising the biomolecule, the fluorescent dye, or the nanoparticle compound which is bound to a cyclooctyne moiety of the cyclooctyne compound; and (b) reacting the cyclooctyne compound of formula (I) with a quinone compound represented by the following formula (II) to give a biomolecule, a fluorescent dye, or a nanoparticle compound labeled with the radioisotope: in formula (I), (Z is the biomolecule, the fluorescent dye, or the nanoparticle compound) in formula (II), (b is 0 or an integer from 1 to 10; L is CH2, —COO—, or —CONH—; M is the radioisotope).
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: November 15, 2022
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Sang Hyun Park, Sajid Mushtaq, Dae Seong Choi
  • Patent number: 11485758
    Abstract: The present invention provides bi-terminal PEGylated peptide conjugates that target an integrin such as ?v?6 integrin. In particular embodiments, the peptide conjugates of the present invention further comprise a biological agent such as an imaging agent or a therapeutic agent, e.g., covalently attached to one of the PEG moieties. The peptide conjugates of the present invention are particularly useful for imaging a tumor, organ, or tissue and for treating integrin-mediated diseases and disorders such as cancer, inflammatory diseases, autoimmune diseases, chronic fibrosis, chronic obstructive pulmonary disease (COPD), lung emphysema, and chronic wounding skin disease. Compositions and kits containing the peptide conjugates of the present invention find utility in a wide range of applications including, e.g., in vivo imaging and immunotherapy.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: November 1, 2022
    Assignee: The Regents of the University of California
    Inventors: Sven H. Hausner, Julie L. Sutcliffe
  • Patent number: 11458205
    Abstract: Provided herein are conjugates including a polypeptide and one or more drug molecules. The polypeptide includes one or more charged motifs, and may further include one or more uncharged motifs. The conjugates may be used to effectively deliver the drug molecule to a subject.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: October 4, 2022
    Assignee: Duke University
    Inventors: Ashutosh Chilkoti, Samagya Banskota, Parisa Yousefpour, Jayanta Bhattacharyya
  • Patent number: 11458212
    Abstract: Cellular targets on cancer cells have been identified that can be used with targeted molecular imaging to detect the cancer cells in vivo. Non-invasive methods for detecting cancer cells, such as metastasized cancer cells, are therefore provided. Also provided are compositions and kits for use in the disclosed methods.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: October 4, 2022
    Assignees: H. Lee Moffitt Cancer Center and Research Institute, Inc., Arizona Board of Regents on Behalf of the University of /Arizona
    Inventors: David L. Morse, Robert J. Gillies, Amanda Huynh, Josef Vagner
  • Patent number: 11446400
    Abstract: The present invention provides methods of monitoring and measuring tumor-associated free PSA (“fPSA”) with antibody polypeptides as an indication of androgen receptor signaling. In a particular embodiment, the methods may be used to assess the efficacy of anti-androgen and/or general anti-cancer treatments. The present invention also provides various methods and compositions relating to antibodies that are specific for tumor-associated or intratumoral fPSA. For example, the present invention provides compositions, including pharmaceutical compositions, comprising anti-fPSA antibodies, or fragments or characteristic portions thereof. The present invention further provides various therapeutic and/or diagnostic methods of using anti-fPSA antibodies and/or compositions.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: September 20, 2022
    Assignee: Memorial Sloan Kettering Cancer Center
    Inventors: Charles Sawyers, David Ulmert, Jason Lewis, Michael Evans, Hans Lija
  • Patent number: 11433148
    Abstract: The present invention relates to conjugates including a chelating moiety of a metal complex thereof and a therapeutic or targeting moiety, methods for their production, and uses thereof.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: September 6, 2022
    Assignee: Centre for Probe Development and Commercialization
    Inventors: Eric Steven Burak, John Richard Forbes, Matthew David Burr Moran, Ryan Wayne Simms, John Fitzmaurice Valliant, Alla Darwish
  • Patent number: 11426471
    Abstract: Provided herein are protein contrast agents and targeted protein contrast agents, formulations thereof, and methods of use, including but not limited to, as a magnetic resonance imaging contrast agent.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: August 30, 2022
    Assignee: Georgia State University Research Foundation, Inc.
    Inventors: Jenny Jie Yang, Fan Pu, Shenghui Xue, Jingjuan Qiao, Shanshan Tan, Mani Salarian
  • Patent number: 11419954
    Abstract: Provided herein are protein contrast agents and targeted protein contrast agents, formulations thereof, and methods of use, including but not limited to, as a magnetic resonance imaging contrast agent.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: August 23, 2022
    Assignee: Georgia State University Research Foundation, Inc.
    Inventors: Jenny Jie Yang, Fan Pu, Shenghui Xue, Jingjuan Qiao, Shanshan Tan, Mani Salarian
  • Patent number: 11413359
    Abstract: The present invention provides compounds that have motifs that target the compounds to cells that express integrins. In particular, the compounds have peptides with one or more RD motifs conjugated to an agent selected from an imaging agent and a targeting agent. The compounds may be used to detect, monitor and treat a variety of disorders mediated by integrins.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: August 16, 2022
    Assignee: WASHINGTON UNIVERSITY
    Inventors: Samuel Achilefu, Kexian Liang, Rui Tang
  • Patent number: 11414455
    Abstract: Disclosed are monoacylated Toll-like receptor 2 ligands which can be used in both the development of targeted agents for the imaging and treatment of pancreatic cancer as well as other cancers, and as an adjuvant for cancer immunotherapy. The monoacylated compounds disclosed herein have a higher binding affinity for TLR2 relative to a known potent diacylated agonists, but only ?½ the bioactivity. Competition of the monoacylated compound with the diacylated compound for binding TLR2 was confirmed. Hence, the reported monoacylated compounds are inhibitors/antagonists of TLR2 activation.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: August 16, 2022
    Assignees: H. LEE MOFFITT CANCER CENTER AND RESEARCH INSTITUTE, INC., THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA, UNIVERSITY OF SOUTH FLORIDA
    Inventors: David L. Morse, Josef Vagner, Mark McLaughlin, Robert Gillies, Amanda Huynh, Michael Doligalski
  • Patent number: 11406720
    Abstract: The present disclosure relates to Fibroblast Growth Factor Receptor 2-specific peptide reagents, methods for detecting epithelial-derived cancer cells such as esophageal, colorectal, gastric, pancreatic or breast carcinoma cells using the peptide reagents, and methods for targeting such cells using the peptide reagents.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: August 9, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Thomas D. Wang, Juan Zhou
  • Patent number: 11369683
    Abstract: The present invention relates to nanoparticles. In particular, the present invention provides nanoparticles for clinical (e.g., targeted therapeutic), diagnostic (e.g., imaging), and research applications in the field of cardiology. For example, in some embodiments, the present invention provides a method of treating (e.g., ablating) cardiac tissue, comprising: a) contacting an animal with a nanoparticle comprising a matrix, a toxic (e.g., ablative) agent (e.g., sonosensitizer, chemotherapeutic agent (e.g., doxorubicin or cisplatin), or photosensitizer), and a cardiac targeting moiety; and b) administering an activator of the toxic agent (e.g., light, chemical (e.g., pharmaceutical agent) or ultrasound) to at least a portion of the cardiac tissue (e.g., heart) of the animal to activate the toxic agent.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: June 28, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Jerome Kalifa, Raoul Kopelman, Uma Mahesh R. Avula, Gwangseong Kim, Yong-Eun Koo Lee, Hyung Ki Yoon
  • Patent number: 11365219
    Abstract: Peptides having activity as protein binding agents are disclosed. The peptides have the following structure (I): including stereoisomers, pharmaceutically acceptable salts and prodrugs thereof, wherein R, R1, L1, L2, G, M, Y1Y2 and SEQ are as defined herein. Methods associated with preparation and use of such peptides, as well as pharmaceutical compositions comprising such peptides, are also disclosed.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: June 21, 2022
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: James R. Heath, Rosemary Dyane Rohde, Arundhati Nag, Samir Das, Aiko Umeda
  • Patent number: 11358962
    Abstract: The invention relates to small molecule imaging tools, specifically compounds of formula II and to pharmaceutically acceptable acid addition salts thereof, wherein R1-R6 have any of the values defined in the specification.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: June 14, 2022
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Edilio Borroni, Luca Gobbi, Michael Honer, Henner Knust, Matthias Koerner, Dieter Muri
  • Patent number: 11352437
    Abstract: The present description relates to a conjugated compound comprising cholic acid (ChAc) or a variant thereof, the ChAc conjugated to a non-cell penetrating peptide comprising a nuclear localization sequence (NLS) conjugated to a compound of interest.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: June 7, 2022
    Assignee: DEFENCE THERAPEUTICS INC.
    Inventors: Simon Beaudoin, Jeffrey Victor Leyton
  • Patent number: 11344633
    Abstract: A composition comprises an anti-nucleolin agent conjugated to nanoparticles. The nanoparticles are non-magnetic, not iron oxide and not polyacrylamide. Furthermore, a pharmaceutical composition for treating cancer comprises a composition including an anti-nucleolin agent conjugated to nanoparticles, and a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: May 31, 2022
    Assignee: University of Louisville Research Foundation, Inc
    Inventors: Paula J. Bates, Mohammad Tariq Malik, Kyung A. Kang
  • Patent number: 11344623
    Abstract: Conjugates are described herein where CCK2R targeting ligands are attached to an active moiety, such as therapeutic agent or an imaging agent, through a linker. The conjugates can be used in the detection, diagnosis, imaging and treatment of cancer.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: May 31, 2022
    Assignee: Purdue Research Foundation
    Inventors: Philip Stewart Low, Charity Wayua
  • Patent number: 11344634
    Abstract: Provided is a compound including at least one carrier moiety associated with a plurality of CT imaging moieties, and with at least one enzyme interacting moiety as well as uses thereof in diagnosis.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: May 31, 2022
    Assignee: Yissum Research Development Company of the Hebrew University of Jerusalem Ltd.
    Inventors: Galia Blum, Darya Tsivrkun, Hanmant Gaikwad
  • Patent number: 11344635
    Abstract: Macrocyclic complexes and macrocyclic compounds. The macrocyclic complexes or macrocyclic compounds have a TACN moiety with one or more amine group(s) or a O- or S-substituted TACN moiety. The macrocyclic complexes have a high-spin Fe(III) atom coordinated to the TACN moiety. The macrocyclic complexes can be used in imaging methods.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: May 31, 2022
    Assignee: The Research Foundation for the State University of New York
    Inventors: Janet R. Morrow, Zuiru Lin, Didar Asik, Eric M. Snyder, Elizabeth A. Kras