Patents Examined by Daniel Gatewood
  • Patent number: 10056602
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: August 21, 2018
    Assignee: CF Traverse LLC
    Inventor: Ronald A Rojeski
  • Patent number: 9985255
    Abstract: Various embodiments of a battery assembly include a first housing shell, a second housing shell, an insulator and battery components. The first housing shell has a first perimeter side wall, a first housing bottom, and a first contact area on the first housing bottom. The second housing shell has a second perimeter side wall, a second housing bottom, and a second contact area on the second housing bottom. The second housing shell is disposed in the first housing shell with the second contact area opposing the first contact area. The insulator is interposed between the first housing shell and the second housing shell to effect electrical insulation between the first housing shell and the second housing shell. The battery components include an anode electrode, a cathode electrode, and a separator interposed between the cathode electrode and the anode electrode. The separator contains an electrolyte.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: May 29, 2018
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, John K. Day, Erik J. Hovland, Jody J. Klaassen, Prabhakar A. Tamirisa, Collette M. Vanelzen
  • Patent number: 9979047
    Abstract: An all-solid battery that includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer. At least one of the positive electrode layer and the negative electrode layer contains an electrode active material and a solid electrolyte, and a difference between a resistivity associated with ion migration and a resistivity associated with electron migration is 0 k?·cm or more and 100 k?·cm or less in the electrode layer containing the electrode active material and the solid electrolyte.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: May 22, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Tadaaki Matsumura, Mika Tagami
  • Patent number: 9979017
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: May 22, 2018
    Assignee: CF Traverse LLC
    Inventor: Ronald A Rojeski
  • Patent number: 9966197
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: May 8, 2018
    Assignee: CF Traverse LLC
    Inventor: Ronald A Rojeski
  • Patent number: 9960225
    Abstract: It is an object to improve performance of a power storage device, such as cycle characteristics. A power storage device includes a current collector and a crystalline semiconductor layer including a whisker, which is formed on and in close contact with the current collector. Separation of the crystalline semiconductor layer is suppressed by an increase of adhesion, whereby cycle characteristics in which a specific capacity of a tenth cycle number with respect to a first cycle number is greater than or equal to 90% is realized. In addition, cycle characteristics in which a specific capacity of a hundredth cycle number with respect to a first cycle number is greater than or equal to 70% is realized.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: May 1, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazutaka Kuriki, Michiko Konishi, Asami Tadokoro, Yasunori Yoshida, Kiyofumi Ogino, Toshihiko Takeuchi
  • Patent number: 9954224
    Abstract: An object of the present invention is to provide nickel cobalt manganese composite hydroxide particles having a small particle diameter and a uniform particle size distribution, and a method for producing the same. [Solution] A method for producing a nickel cobalt manganese composite hydroxide by a crystallization reaction is provided. The method includes: a nucleation step of performing nucleation by controlling a pH of an aqueous solution for nucleation including metal compounds containing nickel, cobalt and manganese, and an ammonium ion donor to 12.0 to 14.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard; and a particle growth step of growing nuclei by controlling a pH of an aqueous solution for particle growth containing nuclei formed in the nucleation step to 10.5 to 12.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: April 24, 2018
    Assignees: SUMITOMO METAL MINING CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISH
    Inventors: Hiroyuki Toya, Shin Imaizumi, Kensaku Mori, Atsushi Fukui, Kenji Ikeuchi, Kazuomi Ryoshi, Toshiyuki Osako, Hiroki Nagai
  • Patent number: 9947962
    Abstract: The invention relates to Chevrel-phase materials and methods of preparing these materials utilizing a precursor approach. The Chevrel-phase materials are useful in assembling electrodes, e.g., cathodes, for use in electrochemical cells, such as rechargeable batteries. The Chevrel-phase materials have a general formula of Mo6Z8 and the precursors have a general formula of MxMo6Z8. The cathode containing the Chevrel-phase material in accordance with the invention can be combined with a magnesium-containing anode and an electrolyte.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: April 17, 2018
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Prashant N. Kumta, Partha Saha, Moni Kanchan Datta, Ayyakkannu Manivannan
  • Patent number: 9941709
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 10, 2018
    Assignee: CF Traverse LLC
    Inventor: Ronald A Rojeski
  • Patent number: 9935301
    Abstract: A pressure equalization element for a housing includes a water-impermeable membrane. The membrane is combined with either a pressure relief valve acting in two directions or with a corresponding combination of two pressure relief valves such that a volume of air exchange is reduced. An amount of moisture transported into the housing is thus also reduced.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: April 3, 2018
    Assignees: Robert Bosch GmbH, Samsung SDI Co., Ltd.
    Inventors: Michael Gless, Ulrich Zimmermann
  • Patent number: 9935308
    Abstract: There is provided molybdenum oxide for an active material of an electricity storage device having excellent rate characteristics and structural stability. A turbostratic material 1 has a turbostratic structure composed of a plurality of nanosheets 2, where the nanosheets have the composition MoO2.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: April 3, 2018
    Assignees: PANASONIC CORPORATION, KYOTO UNIVERSITY
    Inventors: Hidetaka Sugaya, Katsutoshi Fukuda, Masahito Morita, Yoshiharu Uchimoto
  • Patent number: 9935303
    Abstract: An alumina slurry containing alumina dispersed in a dispersion medium, the alumina having an average primary particle diameter of 0.1 ?m or more and 1.0 ?m or less, the alumina satisfying the following condition (1), and the slurry having a content of the alumina of 30% by mass or more and 70% by mass or less and a content of water in the dispersion medium of 50% by mass or more: condition (1): in relationship of a pore diameter r1 (?) and a pore volume Dv1 (mL/g) of the alumina measured by a nitrogen desorption method based on JIS Z8831-2 (2010), the pore volume Dv1(80) at r1=80 and the maximum value Dv1(M) of Dv1 in a range 20?r1?80 satisfy Dv1(M)>Dv1(80).
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: April 3, 2018
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Hiroto Yamada, Tomoyuki Nemoto
  • Patent number: 9917300
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nano fiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: March 13, 2018
    Assignee: CF Traverse LLC
    Inventor: Ronald A Rojeski
  • Patent number: 9905875
    Abstract: This redox flow secondary battery has an electrolyte tank (6) containing: a positive electrode cell chamber (2) containing a positive electrode (1) comprising a carbon electrode; a negative electrode cell chamber (4) containing a negative electrode (3) comprising a carbon electrode; and an electrolyte membrane (5) as a barrier membrane that separates/isolates the positive electrode cell chamber (2) and the negative electrode cell chamber (4). The positive electrode cell chamber (2) contains a positive electrode electrolyte containing an active substance, the negative electrode cell chamber (4) contains a negative electrode electrolyte containing an active substance, and the redox flow secondary battery charges and discharges on the basis of the change in valency of the active substances in the electrolytes.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: February 27, 2018
    Assignee: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Akihiro Kato, Naoto Miyake
  • Patent number: 9905861
    Abstract: A reserve batter is provided. The reserve battery includes a housing; a battery inside the housing, the battery including an anode, a cathode and a solid electrolyte between the anode and the cathode; and a movable piece for sliding within the housing to compress the battery such that sufficient heat is generated within the battery to activate the solid electrolyte. Methods of activating a reserve battery are also provided.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: February 27, 2018
    Assignee: Lightening Energy
    Inventor: Christopher K. Dyer
  • Patent number: 9905886
    Abstract: A non-aqueous liquid electrolyte for a secondary battery, containing: at least one selected from a carbonate compound having a halogen atom and a sulfur-containing ring compound; an aromatic ketone compound; an organic solvent; and an electrolyte salt, in which, with respect to 100 parts by mass of the organic solvent, the aromatic ketone compound is 0.001 to 10 parts by mass and the at least one selected from a carbonate compound having a halogen atom and a sulfur-containing ring compound is 0.001 to 10 parts by mass, and more than 50% by mass of the whole amount of the organic solvent is composed of a solvent with a melting point of 10° C. or less.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: February 27, 2018
    Assignee: FUJIFILM Corporation
    Inventors: Kunihiko Kodama, Michio Ono, Ikuo Kinoshita
  • Patent number: 9893338
    Abstract: A secondary battery includes a contact portion on a bottom retainer that contacts a bottom of a case, thus performing a tension function. The secondary battery includes an electrode assembly having a first electrode, a second electrode, and a separator between the first and second electrodes; a case accommodating the electrode assembly therein, having a top and a bottom and an opening in the top of the case; a cap plate closing the opening of the case; a bottom retainer on an upper surface of the bottom of the case, the bottom retainer including a support portion supporting the electrode assembly and at least one contact portion contacting the bottom of the case. As such, the contact portion may absorb external shocks, thus increasing durability and enhancing safety of the secondary battery.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: February 13, 2018
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seung-Ho Kwak, Yong-Chul Seo, Min-Hyung Guen
  • Patent number: 9887407
    Abstract: The present disclosure refers to a secondary battery which comprises a high-voltage cathode active material and a separator whose pores are not obstructed even though being used together with the high-voltage cathode active material, thereby preventing the obstruction of pores in the separator and the formation of a dendrite in the anode and eventually providing good battery life performance.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: February 6, 2018
    Assignees: LG Chem, Ltd., TORAY INDUSTRIES, INC.
    Inventors: Sung-Hoon Yu, Jung-Don Suk, Seok-Koo Kim, Doo-Kyung Yang, Yoo-Sun Kang, Kyung-Mi Lee, Jin-Hyun Park
  • Patent number: 9876237
    Abstract: A fuel cell separator, a fuel cell stack having the fuel cell separator, and a reactant gas control method of the fuel cell stack are provided. That is, even when the fuel cell stack operates under the low load operation condition, a reactant gas is supplied to the reactant gas passages of the fuel cell separator, and thus, the length of the passage can be shortened by 50% as compared with the prior art having only one reactant gas passage. Therefore, the reactant gas can be effectively supplied without experiencing pressure loss. Further, in the high load operation of the fuel cell stack, the reactant gas is introduced into the first reactant gas passage of the fuel cell separator and utilized in half of the whole electrode area. Subsequently, the reactant gas is introduced into the second reactant gas passage and utilized in the remaining half of the electrode area.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: January 23, 2018
    Assignee: DOOSAN CORPORATION
    Inventors: Sung-Jin Oh, Kyoung-Hwang Lee, Seung-Ho Baek, Sung-Hoon Lee, Il-Tae Park, Byung-Sun Hong, Mee-Nam Shinn
  • Patent number: 9876207
    Abstract: The present invention proposes a structure of a battery module in which a spacer can slide by means of a guide member constituting the battery module and can be positioned. A battery module according to the present invention is a battery module 9 provided with a battery block 8 in which a plurality of rectangular battery cells 1 are arranged and laminated, and includes a spacer 2 which intervenes between the plurality of battery cells 1, guide members 4 and 5 which slidably support the spacer 2 along a laminating direction of the battery cells 1, and end plates 3 as a pair which are respectively arranged on one side and the other side of the guide members 4 and 5 in a sliding direction and which sandwich the battery block 8 from both sides in the sliding direction.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: January 23, 2018
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Naoya Tokoo, Osamu Kubota, Hidekazu Fujimura, Michihiro Kimura, Naoki Kojima, Takashi Suzuki