Patents Examined by Daniel L Murphy
  • Patent number: 11150535
    Abstract: An optical signal transmitter includes a laser source configured to generate light with different wavelengths, respectively; a wavelength division (WD) demultiplexer configured to redirect the light in different directions based on the different wavelengths, respectively; and a lens array including an array of lenses configured to collimate the light from the WD demultiplexer for transmission in different directions, respectively. The optical signal transmitter may be implemented in a light detection and ranging (LIDAR) apparatus. The optical signal transmitter may further include a 1×N splitter and a set of WD demultiplexers to increase the number of distinct optical signal transmissions.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: October 19, 2021
    Inventor: Henry Hung
  • Patent number: 11137498
    Abstract: A scanning rangefinding system includes a MEMS device with a scanning mirror that sweeps a beam in two dimensions. Actuating circuits receive angular extents and offset information and provide signal stimulus to the MEMS device to control the amount and direction of mirror deflection on two axes. The scan angle and offset information may be modified to create a repeating pattern of different fields of view.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: October 5, 2021
    Assignee: Microvision, Inc.
    Inventors: Jari Honkanen, P. Selvan Viswanathan, Robert James Jackson
  • Patent number: 11137507
    Abstract: The present invention discloses a near-sea-bottom hydrate detection system, which includes a ship-borne part and a deep-towing part. The ship-borne part includes: a comprehensive monitoring host, configured to send an acquisition triggering pulse signal, and transmit the signal to the deep-towing part; and receive near-sea-bottom information acquired by the deep-towing part, and determine a near-sea-bottom condition according to the near-sea-bottom information.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: October 5, 2021
    Assignee: The First Institute of Oceanography, SOA
    Inventors: Baohua Liu, Yanliang Pei, Kaiben Yu, Yifan Huang, Zili Chen, Guangming Kan, Yanhong Lian, Keping Yan, Chunlei Jing, Le Zong
  • Patent number: 11134209
    Abstract: The present technology relates to a light receiving device, a control method, and an electronic apparatus capable of suppressing saturation of a sensor that receives light. A control unit performs exposure control to control, in accordance with a photometry result of a photometry sensor that performs photometry by receiving light, exposure of another sensor of which a light receiving surface that receives light is divided into a plurality of blocks, the exposure control being performed for each block. The present technology can be applied, for example, an electronic apparatus such as a digital camera that receives light.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: September 28, 2021
    Assignee: Sony Corporation
    Inventor: Motoshige Okada
  • Patent number: 11123766
    Abstract: A high-voltage pulser circuit for Electromagnetic Acoustic Transducer (EMAT) coils using a Capacitive Discharge push-pull converter. The present invention relates in particular to the operation of the converter into an Electromagnetic Acoustic Transducer (EMAT) differential coil. The present invention reduces ringing of the coil current resulting in a smaller blind zone and a well-defined broadband ultrasonic wave from the coil. The pulser can be used to generate one or more cycles and work in either pulse-echo (same transmitter and receiver) or pitch-catch (different transmitter and receiver).
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: September 21, 2021
    Assignee: INNERSPEC TECHNOLOGIES, INC
    Inventors: Stephen William Smith, Philip Haywood Cox
  • Patent number: 11125900
    Abstract: Estimating an earth response can include deconvolving a multi-dimensional source wavefield from near-continuously recorded seismic data recorded at a receiver position. The deconvolving can include spreading the near-continuously recorded seismic data across a plurality of possible source emission angles. The result of the deconvolution can be the earth response estimate.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: September 21, 2021
    Assignee: PGS GEOPHYSICAL AS
    Inventors: Tilman Kluver, Stian Hegna
  • Patent number: 11125868
    Abstract: A method and device for processing an echo signal received from an acoustic sensor. The echo signal is detected over a measurement time interval. A minimum value is ascertained, which describes a minimum amplitude of the echo signal within the measurement interval. An amplitude value is ascertained, which describes an amplitude of the echo signal within a measurement window. The measurement window is a predefined time interval within the measurement interval. A difference is ascertained between the minimum value and the amplitude value. A determination is made whether the echo signal comprises an interference signal of the first type or an interference signal of the second type, based on the ascertained difference.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: September 21, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Dirk Schmid, Michael Schumann
  • Patent number: 11119236
    Abstract: In the field of marine geophysical surveying, systems and methods for controlling the spatial distribution or orientation of a geophysical sensor streamer or an array of geophysical sensor streamers towed behind a survey vessel are provided. Various techniques for changing the spatial distribution or orientation of such geophysical sensor streamers in response to changing conditions are provided. For example, crosscurrent conditions may be determined based on configuration data received from positioning devices along the length of a streamer, and a new desired orientation for the streamer may be determined based on the crosscurrent conditions. The new desired orientation may include a new desired feather angle for the streamer.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: September 14, 2021
    Assignee: PGS GEOPHYSICAL AS
    Inventors: Øyvind Hillesund, Torbjørn Ursin, Toralf Lund
  • Patent number: 11112270
    Abstract: The present invention discloses an attitude self-compensation method to the transmitters of wMPS based on inclinometer, including the following steps: step 1: arranging inclinometer-combined transmitters according to the mechanism structure of the transmitters; step 2: building a horizontal reference frame based on an automatic level and guide rail; step 3: calibrating rotation relationship between the inclinometer and transmitter coordinate systems by referring to the horizontal reference frame according to the measurement model of the inclinometer and rotation measurement model of the transmitter; step 4: updating the orientation parameters of the transmitters in real time according to the output values of the inclinometer and compensation algorithm for the orientation parameters. The method of the present invention aims at self-compensating the orientation parameters of transmitters in real time and increasing the stability of the system.
    Type: Grant
    Filed: December 25, 2017
    Date of Patent: September 7, 2021
    Assignee: Tianjin University
    Inventors: Jiarui Lin, Jigui Zhu, Yongjie Ren, Linghui Yang, Siyang Guo
  • Patent number: 11105941
    Abstract: Managing movement of data packets along a geophysical sensor cable. At least some embodiments include a geophysical sensor cable section having an internal volume within which geophysical sensors are disposed at spaced apart locations. A digitizer is disposed within the internal volume and is communicatively coupled to sensors. A telemetry unit within the internal volume is communicatively coupled to the digitizer. The telemetry unit may comprise multiple forward ports, multiple aft ports and a controller communicatively coupled to the forward ports, the aft ports, and the digitizer. The controller may be configured to: relay downstream-directed packets received on an active forward port through all aft ports; gather sensor data from the digitizer and send the sensor data as upstream-directed packets through the active forward port; and relay any upstream-directed packets received on aft ports through the active forward port.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: August 31, 2021
    Assignee: PGS Geophysical AS
    Inventor: Geir Andre Motzfeldt Drange
  • Patent number: 11098565
    Abstract: An embodiment in accordance with the present invention includes a method for estimating the permeability of fractured rock formations from the analysis of a slow fluid pressure wave, which is generated by pressurization of a borehole. Wave propagation in the rock is recorded with TFI™. Poroelastic theory is used to estimate the permeability from the measured wave speed. The present invention offers the opportunity of measuring the reservoir-scale permeability of fractured rock, because the method relies on imaging a wave, which propagates through a large rock volume, on the order of kilometers in size. Traditional methods yield permeability for much smaller rock volumes: well logging tools only measure permeability in the vicinity of a borehole. Pressure transient testing accesses larger rock volumes; however, these volumes are much smaller than for the proposed method, particularly in low-permeability rock formations.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: August 24, 2021
    Assignee: The John Hopkins University
    Inventors: Markus Hilpert, Peter Anderson Geiser, Bruce D. Marsh
  • Patent number: 11092671
    Abstract: A lidar system includes a laser diode to provide a frequency modulated continuous wave (FMCW) signal, and a current source to provide a drive signal that modulates the laser diode. The current source is controlled to pre-distort the drive signal to provide a linear FMCW signal. The lidar system also includes a splitter to split the FMCW signal into an output signal and a local oscillator (LO) signal, a transmit coupler to transmit the output signal, a receive coupler to obtain a received signal based on reflection of the output signal by a target, and a combiner to combine the received signal with the LO signal into first and second combined signals. A first and second photodetector respectively receive the first and second combined signals and output first and second electrical signals from which a beat signal that indicates the pre-distortion needed for the drive signal is obtained.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: August 17, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Raymond Sarkissian, Keyvan Sayyah
  • Patent number: 11092675
    Abstract: An example optical transceiver system, such as a solid-state light detection and ranging (lidar) system, includes a tunable, optically reflective metasurface to selectively reflect incident optical radiation as transmit scan lines at transmit steering angles between a first steering angle and a second steering angle. In some embodiments, a feedback element, such as a volume Bragg grating element, may lock a laser to narrow the band of optical radiation. A receiver may include a tunable, optically reflective metasurface for receiver line-scanning or a two-dimensional array of detector elements forming a set of discrete receive scan lines. In embodiments incorporating a two-dimensional array of detector elements, receiver optics may direct optical radiation incident at each of a plurality of discrete receive steering angles to a unique subset of the discrete receive scan lines of detector elements.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: August 17, 2021
    Assignee: Lumotive, LLC
    Inventors: Gleb M. Akselrod, Prasad Padmanabha Iyer, Ross D. Uthoff
  • Patent number: 11092676
    Abstract: Disclosed herein are a number of example embodiments that employ controllable delays between successive ladar pulses in order to discriminate between “own” ladar pulse reflections and “interfering” ladar pulses reflections by a receiver. Example embodiments include designs where a sparse delay sum circuit is used at the receiver and where a funnel filter is used at the receiver. Also, disclosed are techniques for selecting codes to use for the controllable delays as well as techniques for identifying and tracking interfering ladar pulses and their corresponding delay codes. The use of a ladar system with pulse deconfliction is also disclosed as part of an optical data communication system.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: August 17, 2021
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, David Cook, Blair B. Lacorte
  • Patent number: 11085816
    Abstract: An ultrasonic wave sensor includes an oscillating plate including a plurality of oscillators, a wall portion provided on the oscillating plate and surrounding the oscillator, and a piezoelectric element provided on each of the plurality of oscillators. In the oscillating plate, a plurality of piezoelectric elements are electrically connected in plan view as viewed from a thickness direction, and a first area where an input and an output of a drive signal to the piezoelectric element are possible and a second area which is provided on an outer side of the first area and where the piezoelectric element is electrically insulated from the piezoelectric element disposed in the first area are included. In the second area, a distance between the adjacent oscillators is reduced as separated from the first area.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: August 10, 2021
    Inventors: Koji Ohashi, Chikara Kojima
  • Patent number: 11086012
    Abstract: A method for operating an ultrasonic measuring device, encompassing the steps of receiving echo amplitudes, ascertaining object distances for the received echo amplitudes, computing normalized echo amplitudes for the received echo amplitudes, a received echo amplitude with a certain object distance being divided by a reference echo amplitude for the same or a similar object distance, encoding the normalized echo amplitudes, and transmitting the encoded echo amplitudes to a control unit. Also described is a related computer program, a system for carrying out the method, and a vehicle that includes a driving assistance system.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: August 10, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Albrecht Klotz, Dirk Schmid, Michael Schumann
  • Patent number: 11079478
    Abstract: An optoelectronic sensor (10) for measuring a distance of an object (18) in accordance with a time of flight principle comprises a light transmitter (12) for transmitting a light signal (14), a light receiver (22) for receiving the light signal (20) after reflection or remission by the object (18), the light receiver (22) having a first plurality of pixel elements (24, 24a) each configured as an avalanche photo diode element biased with a bias voltage greater than a breakdown voltage and thus operated in a Geiger mode in order to trigger an avalanche event upon light reception, a distance measuring unit (34) having a second plurality of time of flight measuring units (34a) connected to pixel elements (24a) for determining a time of flight between transmission and reception of a light signal, the second plurality being less than the first plurality, switching means (32, 32a) for connecting selected pixel elements (24a) to time of flight measuring units (34a) in a one-to-one fashion, and a pixel selection unit
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: August 3, 2021
    Assignee: FONDAZIONE BRUNO KESSLER
    Inventors: Daniele Perenzoni, David Stoppa, Leonardo Gasparini, Matteo Perenzoni, Nicola Massari, Ulrich Zwölfer, Kai Waslowski, Alexander Bohli, Michael Albert, Friedhelm Wiethege
  • Patent number: 11073597
    Abstract: A method of operating a vehicle image system supported by a vehicle is provided. The method includes receiving data from one or more sensors supported by the vehicle. The one or more sensors capture sensor data of objects in the surrounding environment of the vehicle. The method also includes receiving a storage indication from a user input device. The storage indication is indicative of storing the data from the one or more sensors in the non-transitory memory. The method also includes storing the data after receiving the storage indication and transmitting a command to one or more remote devices causing the one or more remote devices to generate a two-dimensional image or a three-dimensional object based on the received data.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: July 27, 2021
    Assignee: Continental Automotive Systems, Inc.
    Inventor: Goran Vuletici
  • Patent number: 11073617
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with a highly integrated LIDAR measurement device are described herein. In one aspect, the illumination source, detector, and illumination driver are integrated onto a single printed circuit board. In addition, in some embodiments, the associated control and signal conditioning electronics are also integrated onto the common printed circuit board. Furthermore, in some embodiments, the illumination driver and the illumination source are integrated onto a common Gallium Nitride substrate that is independently packaged and attached to the printed circuit board. In another aspect, the illumination light emitted from the illumination source and the return light directed toward the detector share a common optical path within the integrated LIDAR measurement device. In some embodiments, the return light is separated from the illumination light by a beam splitter.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: July 27, 2021
    Assignee: VELODYNE LIDAR USA, INC.
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow
  • Patent number: 11067672
    Abstract: A LIDAR device includes an input node, an output node, and a sample-and-convert circuit. The input node receives a photodetector signal, and the output node generates an output signal indicating a light intensity value of the photodetector signal. The sample-and-convert circuit includes a number of detection channels coupled in parallel between the input node and the output node. In some aspects, each of the detection channels may be configured to sample a value of the photodetector signal during the sample mode and to hold the sampled value during the convert mode using a single capacitor.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: July 20, 2021
    Assignee: Waymo LLC
    Inventors: Vadim Gutnik, Andrew Abo