Patents Examined by Daniel P. Malley
  • Patent number: 10692658
    Abstract: Disclosed is a photoelectric conversion element including a cell. The cell includes an electrode substrate, a counter substrate, an oxide semiconductor layer provided on the electrode substrate, an electrolyte provided between the electrode substrate and the counter substrate, and an annular sealing portion joining the electrode substrate and the counter substrate. The layer includes a main body portion provided inside the sealing portion and on the electrode substrate and extending straight from the electrode substrate toward the counter substrate, and a protruding portion which protrudes from the main body portion toward the sealing portion and does not come into contact with the electrode substrate. A width of a second surface of the layer facing the counter substrate is longer than a width of a first surface which is a boundary surface between the layer and the electrode substrate in a cross section along a thickness direction of the layer.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: June 23, 2020
    Assignee: FUJIKURA LTD.
    Inventor: Keisuke Naka
  • Patent number: 10680549
    Abstract: A drive shaft includes an extruded internal tube having teeth formed thereon. The drive shaft also includes an extruded external tube having teeth formed therein and coaxially receiving the internal tube. The teeth of the internal tube engaging the teeth of the external tube, wherein the internal tube and the external tube are aluminum.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: June 9, 2020
    Assignee: NEAPCO INTELLECTUAL PROPERTY HOLDINGS, LLC
    Inventors: Shawn Lange, Richard Schneck
  • Patent number: 10665740
    Abstract: Disclosed is a thin film type solar cell which prevents short circuit from occurring between a first electrode and a second electrode due to a burr produced in a separation part, thereby preventing an output from being reduced. The thin film type solar cell includes a substrate, a first electrode disposed over the substrate and being apart from an adjacent first electrode by a first separation part, a semiconductor layer disposed over the first electrode and being apart from an adjacent semiconductor layer by a contact part and a second separation part, and a second electrode disposed over the semiconductor layer and being apart from an adjacent second electrode by the second separation part. The semiconductor layer contacts the substrate through the first separation part, and the second electrode contacts the first electrode through the contact part. A height of a burr produced in the second separation part is lower than a height between the first electrode and the second electrode.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: May 26, 2020
    Assignee: JUSUNG ENGINEERING CO., LTD.
    Inventors: Yong Hyun Kim, Chang Kyun Park, Young Gi Kim, Duck Ho Kim, Kyung In Min, Sang Su Choi
  • Patent number: 10655160
    Abstract: A formaldehyde electrochemical sensor employing a formaldehyde sensitive assembly of formaldehyde dehydrogenase attached to graphene in fluid communication with a source of NAD+, and a method of measuring formaldehyde utilizing the sensor.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: May 19, 2020
    Assignee: Regents of the University of Minnesota
    Inventors: Tianhong Cui, Shota Sando
  • Patent number: 10658533
    Abstract: The present disclosure provides interconnect elements and methods of using interconnect elements. In one embodiment, the interconnect element includes: a first end including at least three members, each member having a pair of parallel gap apertures for mounting an adjoining first component; a second opposing end including at least two members, each member having a pair of parallel gap apertures for mounting an adjoining second component; and one or more interconnect connecting portions to attach the first end of the interconnect element to the second end of the interconnect element.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: May 19, 2020
    Assignee: SolAero Technologies Corp.
    Inventors: Cory Tourino, Kenneth Craymer, Anthony Sandoval
  • Patent number: 10651785
    Abstract: A photovoltaic assembly comprising; (a) at least two photovoltaic components that are adjacent to each other in a first direction, each photovoltaic component comprising (i) a partial recess in communication with the partial recess in an adjacent photovoltaic component and (ii) one or more connector receptors aligned in a second direction which is non-parallel to the first direction; (b) a connector located at feast partially in the partial recess of the photovoltaic component and at least partially in the partial recess of the adjacent photovoltaic component so that the connector connects the photovoltaic component to the adjacent photovoltaic component, the connector comprising: (i) a flexible housing having a first end and a second end; (ii) one or more connection ports at the first end; (iii) one or more connection ports at the second end; and (iv) one more flexible electrical conductors that extend from the one or more connection ports at the first end to the one or more connection ports at the second en
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: May 12, 2020
    Assignee: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: James R. Keenihan, Leonardo C. Lopez, Joseph A. Langmaid, Shane Washburn, Darius Eghbal, Vijay Karthik Koneru, Kelvin L. Leung
  • Patent number: 10648700
    Abstract: The present invention is a solar concentrator composed of a generally V-shaped trough of reflective Fresnel steps. The Fresnel reflective steps concentrate the sunlight entering the mouth of the V-shaped trough and parallel to its central axis into a central focal area. By disposing a solar energy receiving element at the central focal area of sunlight concentration a preferred embodiment as a concentrating solar energy collector is realized. Various types of solar energy receiving structures are shown that serve to convert the concentrated sunlight into other forms of useful energy to realize the preferred embodiment as a concentrating solar energy collector.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: May 12, 2020
    Inventor: Jeffrey Michael Citron
  • Patent number: 10644183
    Abstract: A solar cell assembly comprises a first assembly of at least one photovoltaic cell and a protective glass positioned on the active face of the first assembly, the area of the protective glass covering more than the entirety of the active face of the first assembly, and comprises a second assembly of at least one portion of the protective glass extending from the active face of the first assembly, the second assembly comprises an optically reflective surface.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: May 5, 2020
    Assignee: THALES
    Inventors: Laurent D'Abrigeon, Frédéric Maloron, Jean-Noël Voirin
  • Patent number: 10644181
    Abstract: A photovoltaic module is provided, and a cell set thereof includes a first cell, a second cell, and a conductive connection element. In the first cell, a first semiconductor stack has a first surface, a second surface, and a first side surface. A first electrode is disposed on the first surface. A second electrode is disposed on the second surface. In the second cell, a second semiconductor stack has a third surface, a fourth surface, and a second side surface. A third electrode is disposed on the third surface. A fourth electrode is disposed on the fourth surface. The conductive connection element connects the first electrode with a part of a first insulation layer on the second surface, and connects the third electrode with a part of a second insulation layer on the fourth surface.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: May 5, 2020
    Assignee: Industrial Technology Research Institute
    Inventors: Chao-Ping Huang, Shang-Yeh Wen, Cheng-Yu Peng
  • Patent number: 10637391
    Abstract: There is disclosed Kirigami-inspired structures for use in solar tracking applications. When coupled with thin-film active materials, the disclosed microstructures can track solar position and maximize solar power generation. In one embodiment, there is disclosed a photovoltaic system comprising a single-axis, or multi-axis solar tracking structure comprising a support structure made of a flexible material having a defined unit cell structure, and a flexible photovoltaic cell disposed on the support structure. There is also disclosed methods of making such structures in which the photovoltaic cell is mounted to the support structure by a direct-attachment bonding processes such as cold-welding.
    Type: Grant
    Filed: November 28, 2014
    Date of Patent: April 28, 2020
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Kyusang Lee, Matthew Shlian, Chih-Wei Chien, Peicheng Ku, Aaron Lamoreux, Max Shtein
  • Patent number: 10629757
    Abstract: Methods of fabricating a solar cell assembly for streamlined bodies are provided. The solar cell assembly may be prepared on an assembly fixture. The solar cell assembly may then be removed from the assembly fixture and positioned on a top surface of the streamlined body. In examples, the solar cell assembly comprises a first film, an array of solar cells on top of the first film, and a second silicone film deposited over the solar cells.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: April 21, 2020
    Assignee: SolAero Technologies Corp.
    Inventors: Matthew Kruse, Fadel Hernandez
  • Patent number: 10612084
    Abstract: A mechanism is provided for reducing entropy of a polyelectrolyte before the polyelectrolyte moves through a nanopore. A free-standing membrane has the nanopore formed through the membrane. An agarose gel is formed onto either and/or both sides of the nanopore in the membrane. The agarose gel is a porous material. The polyelectrolyte is uncoiled by driving the polyelectrolyte through the porous material of the agarose gel via an electric field. Driving the polyelectrolyte, having been uncoiled and linearized by the agarose gel, into the nanopore is for sequencing.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: April 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gustavo A. Stolovitzky, George F. Walker, Chao Wang, Deqiang Wang
  • Patent number: 10612085
    Abstract: A mechanism is provided for reducing entropy of a polyelectrolyte before the polyelectrolyte moves through a nanopore. A free-standing membrane has the nanopore formed through the membrane. An agarose gel is formed onto either and/or both sides of the nanopore in the membrane. The agarose gel is a porous material. The polyelectrolyte is uncoiled by driving the polyelectrolyte through the porous material of the agarose gel via an electric field. Driving the polyelectrolyte, having been uncoiled and linearized by the agarose gel, into the nanopore is for sequencing.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: April 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gustavo A. Stolovitzky, George F. Walker, Chao Wang, Deqiang Wang
  • Patent number: 10591613
    Abstract: Relative GPS antenna alignment uses a phase shifter electrically connected to a first GPS antenna. A combiner is electrically connected to the phase shifter, the second GPS antenna and to a GPS receiver. A GPS reception signal (Sig1) emitted by the first GPS antenna is phase-shifted by the phase shifter by a phase shift (?) that can be set by way of a controller and is added by the combiner to a second GPS reception signal (Sig2) emitted by the second GPS antenna. The composite signal (Sum) thus produced is determined for at least three different phase shifts (?). On the basis of these data, the profile of the composite signal (Sum) and the relative alignment of the two GPS antennas in relation to one another is determined.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: March 17, 2020
    Assignee: KATHREIN-WERKE KG
    Inventor: Robert Bieber
  • Patent number: 10593438
    Abstract: A solar cell front side silver paste doped with modified graphene and its preparation method are disclosed. The solar cell front side silver paste doped with modified graphene comprises by weight 0.1-5 parts of modified graphene, 88-91 parts of silver powder, 5-15 parts of organic binder, 1-5 parts of organic solvent, 1-3 parts of glass powder, wherein the modified graphene is a surface modified graphene. A solar cell front side silver paste is developed, which is screen printed on a crystalline silicon wafer, sintered at a high temperature, penetrates the SiNx passivation layer in the crystalline silicon wafer, and thus forms a good ohmic contact.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: March 17, 2020
    Assignee: Nantong T-Sun New Energy Co., Ltd.
    Inventor: Peng Zhu
  • Patent number: 10585186
    Abstract: A radar attached laterally to airplane fuselage to detect obstacles on a collision course with a portion of the airplane facing the radar. The radar includes an emission antennal channel and reception antennal channels in the same plane. The radar Establishing in a radar coordinate system a first distance/Doppler map allowing echoes to be separated into distance and Doppler resolution cells in reception antennal channels; Establishing a second distance/Doppler map of smaller size by selecting a subset of distance/Doppler resolution cells corresponding to possible positions of targets liable to collide with the airplane; Establishing new distance/Doppler maps by forming beams computationally from the subsets of distance resolution cells; and Temporal integration, in each beam, of successive distance/Doppler maps.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: March 10, 2020
    Assignee: THALES
    Inventors: Pascal Cornic, Patrick Le Bihan, Yves Audic
  • Patent number: 10580911
    Abstract: A photovoltaic element includes: a semiconductor substrate; a first i-type semiconductor film provided on a part of one of surfaces of the semiconductor substrate; a first semiconductor region including a first-conductivity-type semiconductor film provided on the first i-type semiconductor film; a first electrode layer provided on the first semiconductor region; a first conductive film interposed at least at a site between the first semiconductor region and the first electrode layer.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: March 3, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Takeshi Hieda, Masamichi Kobayashi, Chikao Okamoto, Yuta Matsumoto, Kenji Kimoto
  • Patent number: 10581175
    Abstract: A holographic radar reflector includes a surface with a plurality of substantially microwave wavelength scale patterns along one or more portions of the surface. The holographic radar reflector can be a non-specular reflector, where the plurality of substantially microwave wavelength scale patterns have varying reflectivity. The holographic radar reflector can reflect electromagnetic radiation emitted from a fixed feed point in varying directions depending on the portion of the surface reflecting the electromagnetic radiation.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: March 3, 2020
    Assignee: Elwha LLC
    Inventors: Tom Driscoll, Roderick A. Hyde, Jordin T. Kare, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov
  • Patent number: 10580918
    Abstract: The present disclosure provides dual-function photovoltaic (PV) devices that generate electric current and have a colored surface or colored appearance. The PV devices may be angle insensitive and polarization independent. Such a dual-function PV device may have an ultra-thin photoactive layer (e.g., comprising an undoped amorphous silicon) with a thickness of ? about 50 nm. The PV device is configured to filter (transmit or reflect) a portion of an electromagnetic spectrum, providing a controllable and tunable color appearance. Such nanometer a-Si/organic hybrid cells are designed to transmit or reflect angle insensitive colors, electrically powering up to 2% to 3% or higher by efficient absorbed photon to charge conversion. In certain variations, the present disclosure further provides decorative power generating panels creating angle insensitive transmissive or reflective colors.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: March 3, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Lingjie Jay Guo, Jae Yong Lee, Kyu-Tae Lee
  • Patent number: 10581371
    Abstract: A design is described for solar panel that allows for modular installation and efficient removal of panels irrespective of the panel's relative location in an array arrangement. A system is provided that includes a plurality of modular panels (such as solar power panels). These panels are rimmed by frames featuring one or more exterior-facing, grooved channels. A first channel—which may be used to mount the panel, and which replaces traditional railing installation systems—and a second channel that is configured to allow movement of one or more panel splices used to secure the panels together. Integrated electrical connection interfaces are provided on opposite side surfaces of the frames to couple with the electrical connection interfaces of adjacent panels to establish an electrical path between them.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: March 3, 2020
    Assignee: SPICE SOLAR, INC.
    Inventors: Barry Cinnamon, Wilson Leong, David Baker