Patents Examined by Daniel Petkovsek
  • Patent number: 11327254
    Abstract: A terminal arrangement includes an indexing terminal including a housing that includes first and second multi-fiber de-mateable connection locations. Indexed optical fibers extend between the first and second multi-fiber de-mateable connection locations. Drop fibers extend between an optical splitter module within the indexing terminal and each of the first and second multi-fiber de-mateable connection locations. An optical line extends from the optical splitter module to the housing exterior and to an optical splitter within a separate splitter terminal.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: May 10, 2022
    Assignee: CommScope Technologies LLC
    Inventor: Todd Loeffelholz
  • Patent number: 11320586
    Abstract: In accordance with an embodiment, a bandpass transmission filter having a center wavelength of transmission includes: a waveguide structure comprising a grating structure having changing grating pitch values configured to diffract radiation in the waveguide structure having a first wavelength lower than the center wavelength of transmission, and configured to reflect radiation in the waveguide structure having a second wavelength higher than the center wavelength of transmission; and a radiation absorbing structure configured to absorb radiation guided by the waveguide structure having a third wavelength higher than the second wavelength, wherein the radiation absorbing structure is an integrated part of the waveguide structure or comprises a layer arranged adjacent to the waveguide structure.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: May 3, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Andreas Tortschanoff, Cristina Consani, Thomas Grille, Bernhard Jakoby, Christian Ranacher
  • Patent number: 11320719
    Abstract: A graphene structure includes one or more graphene layers. The graphene layers allow for microwave squeezing with gains up to 24 dB over a wide bandwidth.
    Type: Grant
    Filed: July 4, 2020
    Date of Patent: May 3, 2022
    Assignee: Abu Dhabi University
    Inventors: Montasir Yousof Abdallah Qasymeh, Hichem El Euch
  • Patent number: 11320619
    Abstract: An optical fiber cable management panel includes drawer assemblies, each including a drawer slidable within a chassis. The drawer assemblies are secured together by a bracket that includes an interlock arrangement with the chassis. Such an interlock arrangement includes a non-threaded stud engaging a hole. Radius limiters may be part of the drawer assembly and include a cable entry aperture have a closed perimeter and a flared cable guide surface around most of, and preferably all of, the closed perimeter to allow for the entry of cables from all directions. A control mechanism controls movement of the radius limiter relative to the drawer assembly. The control mechanism includes a rotating member that has an axis of rotation transverse to the slidable motion of the radius limiter and normal to the radius limiter.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: May 3, 2022
    Assignee: CommScope Technologies LLC
    Inventors: Joel B. Douglas, Kathleen M. Barnes, Michael J. Franklin, Lonnie E. Hannah, Trevor D. Smith, Steven P. Trebesch
  • Patent number: 11320597
    Abstract: An optical device is provided. The optical device includes a substrate and a plurality of filters. The plurality of filters are disposed over the substrate. Each of the filters includes a support body, a filter layer, and a centrosymmetric spacer. The support body has a first side surface and a second side surface opposite to the first side surface. The filter layer is on the first side surface. The spacer is attached to the first side surface by a second adhesive layer on the first side surface. The centrosymmetric spacer is attached to the filter layer, at least a peripheral portion of the filter layer is free from being covered by the centrosymmetric spacer.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: May 3, 2022
    Assignee: BROWAVE CORPORATION
    Inventors: Chang-Yi Peng, Yu-Wen Hwang
  • Patent number: 11320591
    Abstract: In an example method of forming a waveguide film, a photocurable material is dispensed into a space between a first mold portion and a second mold portion opposite the first mold portion. Further, a relative separation between a surface of the first mold portion with respect to a surface of the second mold portion opposing the surface of the first mold portion is adjusted. The photocurable material in the space is irradiated with radiation suitable for photocuring the photocurable material to form a cured waveguide film. Concurrent to irradiating the photocurable material, the relative separation between the surface of the first mold portion and the surface of the second mold portion is varied and/or an intensity of the radiation irradiating the photocurable material is varied.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: May 3, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Chieh Chang, Christophe Peroz, Sharad D. Bhagat, Michael Anthony Klug, Charles Scott Carden, Roy Matthew Patterson, Matthew S. Shafran
  • Patent number: 11320603
    Abstract: A multi-piece optical coupling device comprises a first piece that includes one or more first receiving elements configured to receive and secure one or more optical waveguides. The first piece further includes one or more light affecting elements configured to affect one or more characteristics of light from the optical waveguides while propagating the light within the optical coupling device. A second piece is separate from the first piece and includes one or more second receiving elements configured to receive the waveguides, the first receiving elements and the second receiving elements configured to align the second piece and the first piece using the optical waveguides. The second piece also includes one or more mating alignment features configured to engage with a mating optical coupling device and to align the optical coupling device with the mating optical coupling device.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: May 3, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Alexander R. Mathews, Terry L. Smith
  • Patent number: 11314143
    Abstract: An optical switch device includes a first semiconductor structure configured to operate as a first waveguide and a second semiconductor structure configured to operate as a second waveguide. The second semiconductor structure is located above or below the first semiconductor structure and separated from the first semiconductor structure. The second semiconductor structure includes a portion of a first doped region doped with dopants of a first type and a portion of a second doped region doped with dopants of a second type that is different from the dopants of the first type.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: April 26, 2022
    Assignee: PSIQUANTUM CORP.
    Inventors: Mihai Vidrighin, Nikhil Kumar, Gary Gibson
  • Patent number: 11314144
    Abstract: A electronic method, includes receiving, by a graphene structure, a microwave signal. The microwave signal has a driving voltage level. The electronic method includes generating, by the graphene structure, optical photons based on the microvolts. The electronic method includes outputting, by the graphene structure, the optical photons.
    Type: Grant
    Filed: August 11, 2019
    Date of Patent: April 26, 2022
    Assignee: Abu Dhabi University
    Inventors: Montasir Yousof Abdallah Qasymeh, Hichem El Euch
  • Patent number: 11307480
    Abstract: An optical semiconductor device including an optical waveguide; a light absorbing region coupled to the optical waveguide; a first conductive region and a second conductive region disposed at both sides of the light absorbing region so as to sandwich the light absorbing region; and a conductor coupled to the first conductive region and the second conductive region to let the first conductive region and the second conductive region short-circuit. With this configuration, the optical semiconductor device provides effects that absorption saturation is less likely to occur even if the light intensity increases, so that reflection return light can be reliably suppressed without using an external power source.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: April 19, 2022
    Assignees: FUJITSU LIMITED, PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventor: Takasi Simoyama
  • Patent number: 11307484
    Abstract: An integrated electro-optic frequency comb generator based on ultralow loss integrated, e.g. thin-film lithium niobate, platform, which enables low power consumption comb generation spanning over a wider range of optical frequencies. The comb generator includes an intensity modulator, and at least one phase modulator, which provides a powerful technique to generate a broad high power comb, without using an optical resonator. A compact integrated electro-optic modulator based frequency comb generator, provides the benefits of integrated, e.g. lithium niobate, platform including low waveguide loss, high electro-optic modulation efficiency, small bending radius and flexible microwave design.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: April 19, 2022
    Assignee: HyperLight Corporation
    Inventors: Mian Zhang, Christian Reimer, Kevin Luke
  • Patent number: 11294257
    Abstract: Microwave-to-optical transducers in an optical ring resonator having intracavity grating to split a single resonance order are provided. In one aspect, a microwave-to-optical transducer includes: an optical ring resonator with intracavity grating; and a microwave signal waveguide optically coupled to the optical ring resonator with the intracavity grating. Microwave-to-optical transducers having multiple pump photon optical ring resonators and multiple signal photon optical ring resonators optically coupled to the optical ring resonator with the intracavity grating are also provided, as is a method of forming a microwave-to-optical transducer, and a method for microwave-optical transduction.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: April 5, 2022
    Assignee: International Business Machines Corporation
    Inventor: Jason S. Orcutt
  • Patent number: 11294259
    Abstract: A electronic method, includes receiving, by a graphene structure, a microwave signal. The microwave signal has a driving voltage level. The electronic method includes generating, by the graphene structure, optical photons based on the microvolts. The electronic method includes outputting, by the graphene structure, the optical photons.
    Type: Grant
    Filed: November 1, 2020
    Date of Patent: April 5, 2022
    Assignee: Abu Dhabi University
    Inventors: Montasir Yousof Abdallah Qasymeh, Hichem El Euch
  • Patent number: 11294256
    Abstract: A method and a system for controlling an optical frequency comb, where the working power of the pump source is dynamically adjusted and controlled, which not only greatly shortens a control time of a stable mode-locking and realizes a fast mode-locking control, but also quickly stabilizes the power control of stable working condition, thereby reducing unnecessary power consumption caused by power reciprocating oscillation tracking controls and better achieving the energy-saving effect of the power adjustment control process. The temperature of the working environment of the pump source is dynamically adjusted and controlled, so that the environment temperature can quickly reach the reference environment temperature required for mode-locking, which not only creates a good temperature condition for the mode-locking of the optical comb system, but also improves the efficiency of environment temperature stability control in the stable working conditions.
    Type: Grant
    Filed: February 7, 2021
    Date of Patent: April 5, 2022
    Assignees: Chongqing Institute of East China Normal University, SHANGHAI LANGYAN OPTOELECTRONICS TECHNOLOGY CO., LTD., East China Normal University
    Inventors: Heping Zeng, Shuang Li, Xuling Shen
  • Patent number: 11287721
    Abstract: A method for reconfigurable optical signal processing. The method includes generating a first pump pulse by propagating a first input pump through a first dispersive medium, generating a first modulated signal by applying a parametric nonlinear wave mixing process on an input optical signal and the first pump pulse, generating a first transformed signal of the input optical signal by propagating the first modulated signal through a second dispersive medium, generating a multiplied signal by multiplying the first transformed signal by a Green's function, generating a second pump pulse by propagating a second input pump through a third dispersive medium, generating a second modulated signal by applying the parametric nonlinear wave mixing process on the multiplied signal utilizing the second pump pulse, and generating a second transformed signal of the multiplied signal by propagating the second modulated signal through a fourth dispersive medium.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: March 29, 2022
    Assignee: SHARIF UNIVERSITY OF TECHNOLOGY
    Inventors: Zahra Kavehvash, Somayyeh Koohi, Hossein Babashah
  • Patent number: 11287568
    Abstract: The wideband multimode co-doped optical fiber has a silica core co-doped with GeO2 and Al2O3. The GeO2 concentration is maximum at the fiber centerline and monotonically decreases radially out to the core radius. The Al2O3 concentration is minimum at the centerline and monotonically increases radially out to maximum concentration at the core radius. The cladding has an inner cladding region of relative refractive index ?2, an intermediate cladding region having a relative refractive index ?3, and an outer cladding region having a relative refractive index ?4, wherein ?3<?2, ?4. The optical fiber has a bandwidth BW?5 GHz·km with a peak wavelength ?P within a wavelength range of 800 nm to 1200 nm and over a wavelength band ?? of at least 100 nm.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: March 29, 2022
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Patent number: 11287588
    Abstract: A fiber ribbon interconnect may include a fiber ribbon, a first optical connector at a first end of the fiber ribbon, and a second optical connector at a second end of the fiber ribbon. The fiber ribbon includes two or more cladding-strengthened glass optical fibers each having an outer surface. The fiber ribbon also includes a common protective coating that surrounds the outer surfaces of the two or more cladding-strengthened glass optical fibers.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: March 29, 2022
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Qi Wu
  • Patent number: 11289870
    Abstract: A system and a method for generating tunable ultrafast optical pulses, the method comprising spectral broadening of a laser input beam by propagating the laser input beam in a nonlinear medium of a third-order nonlinear susceptibility ?(3), yielding an output laser spectrum; and one of: i) selecting at least one portion of the output laser spectrum, yielding an output pulse different than the input pulse and centered at a different frequency; ii) temporal compensation and spatial spreading of spectral components of the output laser spectrum; selecting two pulses at two different frequencies; and nonlinearly mixing the two pulses together in a first second-order nonlinear susceptibility ?(2) nonlinear crystal into a third pulse centered at a frequency which is a difference between the frequencies of the first two pulses; and iii) dividing output laser spectrum into a pump beam and a probe beam, directing a pump pulse to a third second-order nonlinear crystal for THz radiation generation; and directing a probe
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: March 29, 2022
    Inventors: Riccardo Piccoli, Bruno E. Schmidt, Luca Razzari, Younggyun Jeong, Roberto Morandotti
  • Patent number: 11287569
    Abstract: A high-speed imaging system for capturing images of flow created by initiation of energetic material includes a lens collector disposed in a protective shield. The protective shield helps protect the lens collector from damage due to the blast event. The lens connector is connected to an incoherent optical fiber bundle made of a bundle of coherent fiber bundles. The incoherent optical fiber bundle creates scrambled images that are relayed to a high-speed camera. A computer connected to the high-speed camera unscrambles the scrambled images to reproduce the images of the flow.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: March 29, 2022
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael Soo, Meghan Bash
  • Patent number: 11287585
    Abstract: Provided is a connector assembly for optically connecting one or more optical fibers and an array of vertical coupling elements of a photonic integrated circuit (PIC). In various embodiments, the connector assembly is constructed to independently optically scale some feature sizes, such as, for example, the transverse mode size, the array size, the array geometry, and/or various incidence angles, the optical scaling being performed, e.g., from a fiber end face plane to a connector-mating plane and further to a PIC coupling plane. In some embodiments, the connector assembly may support a polarization (de)multiplexing functionality.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: March 29, 2022
    Assignee: Nubis Communications, Inc.
    Inventor: Peter Johannes Winzer