Patents Examined by Dao H. Nguyen
  • Patent number: 11664374
    Abstract: Backside interconnect structures having reduced critical dimensions for semiconductor devices and methods of forming the same are disclosed. In an embodiment, a device includes a first transistor structure over a front-side of a substrate; a first backside interconnect structure over a backside of the substrate, the first backside interconnect structure including first conductive features having tapered sidewalls with widths that narrow in a direction away from the substrate; a power rail extending through the substrate, the power rail being electrically coupled to the first conductive features; and a first source/drain contact extending from the power rail to a first source/drain region of the first transistor structure.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: May 30, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Ting Chung, Hou-Yu Chen, Ching-Wei Tsai
  • Patent number: 11664291
    Abstract: Semiconductor assemblies including thermal management configurations for reducing heat transfer between overlapping devices and associated systems and methods are disclosed herein. A semiconductor assembly may comprise a first device and a second device with a thermally conductive layer, a thermal-insulator interposer, or a combination thereof disposed between the first and second devices. The thermally conductive layer and/or the thermal-insulator interposer may be configured to reduce heat transfer between the first and second devices.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: May 30, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Chan H. Yoo, Owen R. Fay
  • Patent number: 11664379
    Abstract: An integrated circuit semiconductor device includes a first region including a first transistor and a second region in contact with the first region in a second direction. The first transistor includes a first active fin extending in a first direction, a first gate dielectric layer extending from the first active fin onto a first isolation layer in the second direction, and a first gate electrode on the first gate dielectric layer. The second region includes a second transistor including a second active fin extending in the first direction, a second gate dielectric layer extending from the second active fin onto a second isolation layer in the second direction, and a second gate electrode on the second gate dielectric layer. The integrated circuit semiconductor device includes a gate dielectric layer removal region proximate a boundary between the first region and the second region.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: May 30, 2023
    Inventors: Jaehyun Lee, Jonghan Lee, Seonghwa Park, Jongha Park, Jaehoon Woo, Dabok Jeong
  • Patent number: 11658105
    Abstract: A semiconductor package and a manufacturing method are provided. The manufacturing method includes: forming a through via structure and a dipole structure over a carrier, wherein the through via structure and the dipole structure respectively include an insulating core and a conductive layer covering the insulating core; attaching a semiconductor die onto the carrier, wherein the through via structure and the dipole structure are located aside the semiconductor die; laterally encapsulating the though via structure, the dipole structure and the semiconductor die with an encapsulant; and removing the carrier.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: May 23, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Tuan-Yu Hung, Ching-Feng Yang, Hung-Jui Kuo, Kai-Chiang Wu, Ming-Che Ho
  • Patent number: 11658241
    Abstract: An integrated circuit includes a trench gate MOSFET including MOSFET cells. Each MOSFET cell includes an active trench gate in an n-epitaxial layer oriented in a first direction with a polysilicon gate over a lower polysilicon portion. P-type body regions are between trench gates and are separated by an n-epitaxial region. N-type source regions are located over the p-type regions. A gate dielectric layer is between the polysilicon gates and the body regions. A metal-containing layer contacts the n-epitaxial region to provide an anode of an embedded Schottky diode. A dielectric layer over the n-epitaxial layer has metal contacts therethrough connecting to the n-type source regions, to the p-type body regions, and to the anode of the Schottky diode.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: May 23, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Sunglyong Kim, Seetharaman Sridhar, Hong Yang, Ya Ping Chen, Thomas Eugene Grebs
  • Patent number: 11658119
    Abstract: A semiconductor structure includes a first transistor having a first source/drain (S/D) feature and a first gate; a second transistor having a second S/D feature and a second gate; a multi-layer interconnection disposed over the first and the second transistors; a signal interconnection under the first and the second transistors; and a power rail under the signal interconnection and electrically isolated from the signal interconnection, wherein the signal interconnection electrically connects one of the first S/D feature and the first gate to one of the second S/D feature and the second gate.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: May 23, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Xuan Huang, Ching-Wei Tsai, Yi-Hsun Chiu, Yi-Bo Liao, Kuan-Lun Cheng, Wei-Cheng Lin, Wei-An Lai, Ming Chian Tsai, Jiann-Tyng Tzeng, Hou-Yu Chen, Chun-Yuan Chen, Huan-Chieh Su
  • Patent number: 11652043
    Abstract: An integrated circuit (IC) structure includes a gate structure, a source epitaxial structure, a drain epitaxial structure, a front-side interconnection structure, a backside dielectric layer, an epitaxial regrowth layer, and a backside via. The source epitaxial structure and the drain epitaxial structure are respectively on opposite sides of the gate structure. The front-side interconnection structure is over a front-side of the source epitaxial structure and a front-side of the drain epitaxial structure. The backside dielectric layer is over a backside of the source epitaxial structure and a backside of the drain epitaxial structure. The epitaxial regrowth layer is on the backside of a first one of the source epitaxial structure and the drain epitaxial structure. The backside via extends through the backside dielectric layer and overlaps the epitaxial regrowth layer.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: May 16, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pei-Yu Wang, Yu-Xuan Huang
  • Patent number: 11637080
    Abstract: A method for fabricating an integrated circuit device is disclosed. A substrate is provided and an integrated circuit area is formed on the substrate. The integrated circuit area includes a dielectric stack. A seal ring is formed in the dielectric stack and around a periphery of the integrated circuit area. A trench is formed around the seal ring and exposing a sidewall of the dielectric stack. The trench is formed within a scribe line. A moisture blocking layer is formed on the sidewall of the dielectric stack, thereby sealing a boundary between two adjacent dielectric films in the dielectric stack.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: April 25, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Kuo-Yuh Yang, Chia-Huei Lin, Chu-Chun Chang
  • Patent number: 11632889
    Abstract: A memory cell includes a first conductive line, a lower electrode, a carbon nano-tube (CNT) layer, a middle electrode, a resistive layer, a top electrode and a second conductive line. The first conductive line is disposed over a substrate. The lower electrode is disposed over the first conductive line. The carbon nano-tube (CNT) layer is disposed over the lower electrode. The middle electrode is disposed over the carbon nano-tube layer, thereby the lower electrode, the carbon nano-tube (CNT) layer and the middle electrode constituting a nanotube memory part. The resistive layer is disposed over the middle electrode. The top electrode is disposed over the resistive layer, thereby the middle electrode, the resistive layer and the top electrode constituting a resistive memory part. The second conductive line is disposed over the top electrode.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: April 18, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Bin-Siang Tsai, Ya-Jyuan Hung, Chin-Chia Yang, Ting-An Chien
  • Patent number: 11616143
    Abstract: Embodiments of the present disclosure provide a method for forming backside metal contacts with reduced Cgd and increased speed. Particularly, source/drain features on the drain side, or source/drain features without backside metal contact, are recessed from the backside to the level of the inner spacer to reduce Cgd. Some embodiments of the present disclosure use a sacrificial liner to protect backside alignment feature during backside processing, thus, preventing shape erosion of metal conducts and improving device performance.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: March 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Yuan Chen, Huan-Chieh Su, Pei-Yu Wang, Chih-Hao Wang
  • Patent number: 11610927
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor. The image sensor includes and image sensor element disposed within a substrate. The substrate comprises a first material. The image sensor element includes an active layer comprising a second material different from the first material. A buffer layer is disposed between the active layer and the substrate. The buffer layer extends along outer sidewalls and a bottom surface of the active layer. A capping structure overlies the active layer. Outer sidewalls of the active layer are spaced laterally between outer sidewalls of the capping structure such that the capping structure continuously extends over outer edges of the active layer.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: March 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Kai Lan, Hai-Dang Trinh, Hsun-Chung Kuang
  • Patent number: 11610915
    Abstract: A semiconductor device includes: a first stack structure; a second stack structure adjacent to the first stack structure in a first direction; a first insulating layer including protrusion parts protruding in a second direction intersecting the first direction and including a concave part defined between the protrusion parts; and a second insulating layer located between the first stack structure and the second stack structure, the second insulating layer inserted into the concave part and the second insulating layer in contact with at least one protrusion part among the protrusion parts.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: March 21, 2023
    Assignee: SK hynix Inc.
    Inventors: Sang Yong Lee, Sang Min Kim, Jung Ryul Ahn, Sang Hyun Oh, Seung Bum Cha, Kang Sik Choi
  • Patent number: 11610778
    Abstract: A method of defining a pattern includes forming a plurality of cut shapes and a first plurality of openings within a first layer of a multi-layer hard mask to expose first portions of the second layer. A plurality of etch stops is formed by implanting an etch rate modifying species in a portion of the plurality of cut shapes. The first layer is directionally etched at the plurality of cut shapes such that the plurality of etch stops remain. A spacer layer is formed on the first layer and the first portions. A second plurality of openings is formed within the spacer layer to expose second portions of the second layer. The spacer layer is directionally etched to remove the spacer layer from sidewalls of the plurality of etch stops. Portions of the second layer exposed through the first plurality of openings and the second plurality of openings are etched.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: March 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Min Hsiao, Chien-Wen Lai, Shih-Chun Huang, Yung-Sung Yen, Chih-Ming Lai, Ru-Gun Liu
  • Patent number: 11605601
    Abstract: A semiconductor package and a method of forming the same are disclosed. A method of forming a semiconductor package includes the following operations. A polymer layer is formed over a die. A metal feature is formed in the polymer layer. An argon-containing plasma treatment is performed to the polymer layer and the metal feature.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: March 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Wen Chen, Hung-Jui Kuo, Ming-Che Ho
  • Patent number: 11600694
    Abstract: An integrated circuit device includes an active area extending in a first direction on a substrate and a gate line extending in a second direction intersecting with the first direction to intersect with the active area. The gate line comprises a first sidewall and a second sidewall opposite to each other. The first sidewall has a convex shape. The second sidewall has a concave shape.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: March 7, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Juyoun Kim
  • Patent number: 11600695
    Abstract: A method includes providing a structure having two fins extending from a substrate and an isolation structure adjacent to lower portions of the fins; forming a cladding layer over the isolation structure and over top and sidewalls of the fins; recessing the isolation structure using the cladding layer as an etch mask to expose the substrate; after the recessing of the isolation structure, depositing a seal layer over the substrate, the isolation structure, and the cladding layer; forming a sacrificial plug over the seal layer and between the two fins; and depositing a dielectric top cover over the sacrificial plug and laterally between the two fins.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: March 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ko-Cheng Liu, Ming-Shuan Li, Ming-Lung Cheng, Chang-Miao Liu
  • Patent number: 11600564
    Abstract: A method is provided and includes forming a first conductive pattern; forming a photosensitive layer on the first conductive pattern, the photosensitive layer having a first through hole exposing a portion of the first conductive pattern; forming a first via in the first through hole; removing the photosensitive layer; forming a dielectric layer encapsulating the first conductive pattern and the first via, the dielectric layer exposing a top surface of the first via; forming a second conductive pattern on the top surface of the first via, forming a dielectric layer covering the second conductive pattern; etching the dielectric layer to form a second through hole that exposes a portion of the second conductive pattern; forming a second via filling the second through hole and an under bump pad on the second via; and mounting a semiconductor chip on the under bump pad using a connection terminal.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: March 7, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jongyoun Kim, Seokhyun Lee, Minjun Bae
  • Patent number: 11594615
    Abstract: A semiconductor device and a method of manufacturing the same are disclosed. The semiconductor device includes semiconductor wires disposed over a substrate, a source/drain epitaxial layer in contact with the semiconductor wires, a gate dielectric layer disposed on and wrapping around each channel region of the semiconductor wires, a gate electrode layer disposed on the gate dielectric layer and wrapping around the each channel region, and dielectric spacers disposed in recesses formed toward the source/drain epitaxial layer.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: February 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Yu-Lin Yang, Wei-Sheng Yun, Chen-Feng Hsu, Tzu-Chiang Chen
  • Patent number: 11594452
    Abstract: Embodiments of the present disclosure describe techniques for revealing a backside of an integrated circuit (IC) device, and associated configurations. The IC device may include a plurality of fins formed on a semiconductor substrate (e.g., silicon substrate), and an isolation oxide may be disposed between the fins along the backside of the IC device. A portion of the semiconductor substrate may be removed to leave a remaining portion. The remaining portion may be removed by chemical mechanical planarization (CMP) using a selective slurry to reveal the backside of the IC device. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: February 28, 2023
    Assignee: Intel Corporation
    Inventors: Il-Seok Son, Colin T. Carver, Paul B. Fischer, Patrick Morrow, Kimin Jun
  • Patent number: 11587894
    Abstract: Provided is packages and methods of fabricating a package and. The method includes bonding a first device die with a second device die. The second device die is over the first device die. A bonding structure is formed in a combined structure including the first and the second device dies. A component is formed in the bonding structure. The component includes a passive device or a transmission line. The method further includes forming a first and a second electrical connectors electrically coupling to a first end and a second end of the component.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: February 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Fa Chen, Chao-Wen Shih, Tzuan-Horng Liu, Jen-Li Hu