Patents Examined by Dao L. Phan
  • Patent number: 10739455
    Abstract: In various embodiments, methods, systems, and vehicles are provided for distance determinations using cameras from different vehicles. The system includes a first camera onboard a first vehicle, providing a first image, the first image having therein an object of interest (OOI) for which a distance from the first vehicle is desired; and a second camera, providing second camera data including a second image having therein the OOI. The system further includes a control module configured to process and time synchronize first camera data and second camera data to generate a distance determination for the OOI, using the first camera data, the second camera data, and a distance between the first and second camera.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: August 11, 2020
    Inventors: Mohannad Murad, Fan Bai, Joseph G. Machak
  • Patent number: 10734722
    Abstract: The invention discloses a beamforming method for polarized antenna array consisting of a plurality of antenna elements, applied to single layer beamforming or dual layer beamforming, which includes the steps: determining (201) first beamforming weights for phase compensation among the antenna elements within each polarization direction; determining (202) second beamforming weights for phase compensation between equivalent channels of two polarization directions; and calculating (203) hybrid beamforming weights as product of the first beamforming weights and the second beamforming weights. A beamforming apparatus for polarized antenna array is also provided in the invention as well as a radio communication device and a system thereof With the invention, the single-layer and dual-layer beamforming weights are determined for the cross-polarized antenna array without requiring full channel knowledge or the aid of PMI. Computation complexity is lowered and full power amplifier utilization can be achieved.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: August 4, 2020
    Inventors: Yang Hu, David Astely, Zhiheng Guo, Imadur Rahman, Hai Wang, Ruiqi Zhang
  • Patent number: 10732293
    Abstract: A quadrature fully integrated tri-band GPS receiver implemented in 65 nm CMOS. The analog front-end (AFE) is specifically designed for a miniaturized low-power GPS logger that leverages heavy duty-cycling. The main contribution of the RF front-end is comprised of two main signal paths which support the single-band only mode and the tri-band mode (L1, L2, L5). In the tri-band mode, the AFE is able to fold three GPS signals into a single low intermediate frequency channel in part due to the orthogonality of the pseudo-ransom codes. In active mode, the radio draws 12.1 mW in the single-band (L1) mode with a LNA and an active mixer, and 8.2 mW in the tri-band mode with a passive front-end, from a 1.2 V supply, and with a startup time of 20 us.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: August 4, 2020
    Inventors: David D. Wentzloff, Hyeongseok Kim
  • Patent number: 10732291
    Abstract: A GNSS receiver, and an associated method are presented for calculating a position from positioning signals transmitted by a plurality of GNSS transmitters. For example the receiver compsises a first and a second signal acquisition elements having different polarizations, the receiver being configured to process the signals received on the first signal acquisition element to calculate first pseudo range measurements, and the signals received on the second signal acquisition element to calculate second pseudo range measurements and associated quality indicators. The receiver further comprises a calculation circuit configured to select at least one of the second pseudo range measurements depending on the quality indicators, and compare it with the corresponding first pseudo range measurement, and select at least three first pseudo range measurements based on the comparison results to calculate a position.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 4, 2020
    Inventors: Nicolas Capet, François-Xavier Marmet
  • Patent number: 10727606
    Abstract: System and method for fine-tuning electromagnetic beams. One embodiment includes an array of electromagnetic radiators and beam-narrowing configuration. The array of electromagnetic radiators together generates an electromagnetic beam toward a configurable direction. The beam-narrowing configuration narrows the electromagnetic beam and consequently fine-tune the configurable direction. Optionally, the array of electromagnetic radiators is a phased-array that achieves the configurable direction electronically. Additionally or alternatively, the array of electromagnetic radiators is a millimeter-wave array, and the electromagnetic beam is a millimeter-wave beam.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: July 28, 2020
    Assignee: Siklu Communication Ltd.
    Inventors: Ovadia Haluba, Naftali Chayat, Yigal Leiba, Itzik Ben Bassat, Boris Maysel
  • Patent number: 10725183
    Abstract: Systems, methods and apparatuses for multipath mitigation of received global navigation satellite system (GNSS) signals by using pattern recognition are described. One method includes summing correlations of received GNSS signals over time to generate a correlation window. The present system/method recognizes a pattern of a stored correlation window which matches the generated correlation window. The stored correlation window is one of a plurality of stored correlation windows, and each of the plurality of stored correlation window is stored with a corresponding range error. The stored range error corresponding to the matching stored correlation window is used to improve GNSS range measurement.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: July 28, 2020
    Assignee: Samsung Electronics Co., Ltd
    Inventor: Gary Lennen
  • Patent number: 10720703
    Abstract: Various embodiments presented herein relate to determining mutual coupling between a pair of antennas in an array antenna. Various operations presented herein enable comparison between a magnitude and phase of a signal transmitted from a first feed network (via a first antenna) and a magnitude and phase of a portion of the signal received at a second feed network (via a second antenna). Electrical effects engendered by any of the first feed network, a first switch, a first local circuit, the second feed network, a second switch, and a second local circuit can also be determined and their effects mathematically removed. Based upon the foregoing, a mutual coupling between the pair of antenna is determined.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: July 21, 2020
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Hung Loui, Thomas Edward Christian, Jr.
  • Patent number: 10705223
    Abstract: Asynchronous Global Positioning System (GPS) baseband processor architectures with a focus on minimizing power consumption. All subsystems run at their natural frequency without clocking and all signal processing is done on-the-fly.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: July 7, 2020
    Assignee: Cornell University
    Inventors: Rajit Manohar, Benjamin Tang, Stephen Longfield, Sunil A. Bhave
  • Patent number: 10700762
    Abstract: There are provided mechanisms for beam forming using an antenna array comprising dual polarized elements. A method comprises generating one or two beam ports. The one or two beam ports are defined by combining at least two non-overlapping subarrays. Each subarray has two subarray ports. The two subarray ports have identical power patterns and mutually orthogonal polarizations. The at least two non-overlapping subarrays are combined via expansion weights. The expansion weights and map the one or two beam ports to subarray ports such that the one or two beam ports have the same power pattern as the subarrays. At least some of the expansion weights have identical non-zero magnitude and are related in phase to form a transmission lobe. The method comprises transmitting signals using said one or two beam ports.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: June 30, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Maksym Girnyk, Sven Petersson
  • Patent number: 10698117
    Abstract: Implementations relate to systems and methods for location assistance using devices (104) in a personal area network (PAN). In one scenario, a user may use two separate location-enabled devices, such as a wearable personal device (102) and a cellular telephone device (104). In cases, one of those devices may have reached a higher or farther-developed state in terms of generating or storing location information (108) for the user's current position, as compared to the opposite device. This can take place, for instance, when the first (e.g. wearable) device (102) is first turned on. The two devices use platforms and techniques to exchange location information and carry out GPS or other operations to furnish the device that is lagging in position processing progress with assistance which will speed up or otherwise enhance the position fix for that device.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: June 30, 2020
    Assignee: Google Technology Holdings LLC
    Inventors: Vijay L. Asrani, Michael E. Russell
  • Patent number: 10698071
    Abstract: A method for calculating a position of an object of interest in an environment. The method includes: predicting a position and an orientation of the object of interest in the environment; selecting a subset of base stations among a set of base stations located within the environment, by using the predicted position and orientation, and a radiation pattern of a system including the object of interest and a mobile transponder attached to the object of interest; and calculating an actual position of the object of interest, using time of arrival or time difference of arrival measurements between the base stations of the subset and the mobile transponder.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: June 30, 2020
    Assignees: Swiss Timing Ltd, Friedrich-Alexander-Universitaet Erlangen-Nuernberg
    Inventors: Thomas Kautz, Sebastian Scholz, Bjoern Eskofier
  • Patent number: 10700418
    Abstract: The present invention relates to an antenna comprising multiple array elements with a first and second feeding point, each associated with orthogonal polarizations, each array element has a first and second phase centre each associated with the orthogonal polarizations, the first and second phase centres of said array elements are arranged in at least two columns, and one antenna port connected to the first and second feeding points of at least two array elements with first phase centre and second phase centre arranged in the at least two columns via a respective feeding network. The feeding network comprises a beam forming network having a primary connection, connected to the antenna port, and at least four secondary connections. The beam forming network divides power between the first feeding point and the second feeding point and controls phase shift differences between the respective feeding points with phase centre arranged in different columns.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: June 30, 2020
    Inventors: Stefan Johansson, Martin Johansson, Sven Oscar Petersson
  • Patent number: 10698118
    Abstract: Sensor-assisted location technology is disclosed. Primary location technologies, such as GPS, can be used to determine the current location (e.g., a location fix) of a location-enabled device. In some instances, the primary location technology may be unreliable and/or consume more power than an alternative location technology. Sensors, such as accelerometers, compasses, gyrometers, and the like, can be used to supplement and/or increase the accuracy of location data. For example, a location-enabled device can identify an area with unreliable GPS location data and use sensors to calculate a more accurate location. Areas identified may be crowd-sourced. Sensors can be used to identify errors in the location data provided by primary location technology. Sensors can be used to modify a sampling interval of the primary location technology. Sensor can be used to smooth motion on a user interface between sampling intervals of the primary location technology.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: June 30, 2020
    Assignee: Apple Inc.
    Inventor: Devrim Varoglu
  • Patent number: 10690759
    Abstract: Provided is an information processing device including an acquisition unit that acquires a measurement result of a radio wave, an extraction unit that extracts a measurement result indicating an intensity included in a range from top 10% to top 30% from a plurality of measurement results acquired by the acquisition unit, and a processing unit that performs a predetermined process by using the measurement result extracted by the extraction unit.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: June 23, 2020
    Inventor: Yu Hamada
  • Patent number: 10690778
    Abstract: A method for validating time assistance data includes receiving, at a mobile device, the time assistance data via a first wireless communication technology from a serving cell. The method also includes obtaining a reference global navigation satellite system (GNSS) time, at the mobile device, via a second wireless communication technology and determining whether the time assistance data is valid based on the reference GNSS time. Further included in the method is determining a validated GNSS time based on the time assistance data in response to determining that the time assistance data is valid.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: June 23, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Harisrinivas Chandrasekar, Prabhu Kandasamy, Naveen Kumar V. Bonda
  • Patent number: 10693507
    Abstract: Techniques that facilitate reconfigurable transmission of a radar frequency signal are provided. In one example, a system includes a signal generator and a power modulator. The signal generator provides a radar waveform signal from a set of radar waveform signals. The power modulator divides a local oscillator signal associated with a first frequency and a first amplitude into a first local oscillator signal and a second local oscillator signal. The power modulator also generates a radio frequency signal associated with a second frequency and a second amplitude based on the radar waveform signal, the first local oscillator signal and the second local oscillator signal.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: June 23, 2020
    Inventors: Tolga Dinc, Mark A. Ferriss, Daniel Joseph Friedman, Wooram Lee, Bodhisatwa Sadhu, Alberto Valdes Garcia
  • Patent number: 10684350
    Abstract: A wireless location system is disclosed including one or more location centers for outputting locations of mobile stations (MS) for both local and global MS location requests via Internet communication between a distributed network of location centers. The system uses a plurality of MS locating technologies including those based on: two-way TOA and TDOA; pattern recognition; distributed antenna provisioning; GPS signals. Difficulties, such as multipath, poor location accuracy and poor coverage are alleviated via such technologies in combination with: (a) adapting and calibrating system performance according to environmental and geographical changes; (b) capturing location signal data for continual enhancement of an historical database; (c) evaluating MS locations via heuristics and constraints related to terrain, MS velocity and MS path extrapolation, and (d) adjusting likely MS locations.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 16, 2020
    Assignee: TracBeam LLC
    Inventors: Dennis J. Dupray, Sheldon F. Goldberg
  • Patent number: 10670729
    Abstract: A system and method provides an Automotive Safety Integrity Level (ASIL) qualifier for Global Navigation Satellite System (GNSS) position and related values. Specifically, hardware platform diagnostics are executed on one or more platforms associated with a GNSS Position Sensor (GNSSPS) that calculates/obtains position and/or related values. Also, a Receiver Autonomous Integrity Monitoring (RAIM) algorithm is executed on the calculated/obtained position and/or related values. If the results both produce a “good” qualifier, the position and/or related values is assigned an ASIL qualifier of “good” and may be utilized by an ASIL rated system. If either of the qualifiers is a “bad” qualifier, the position and/or related values is assigned an ASIL qualifier of “bad” and cannot be utilized by the ASIL rated system. In addition, the inventive system and method may compute a probability associated with an integrity violation of the RAIM algorithm which may consider the probability of hardware failure.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: June 2, 2020
    Assignee: NovAtel Inc.
    Inventors: Lance de Groot, Zoltan Molnar
  • Patent number: 10656235
    Abstract: The concepts, systems and method described herein provide direction finding (DF) methods based on a minimum distance (MINDIST) search to principal components. In an embodiment, the method includes capturing samples of data from one or more array elements. The samples may be samples of a signal received at the array elements. The method includes generating a spatial sample covariance matrix (SCM) using the samples of data, extracting principal components from the SCM and generating a principal component table using angle and frequency measurement for each of the principal components. The method further includes determining a distance between a test point and each value in the principal component table and identifying a minimum distance point corresponding to a direction of the received signal. The minimum distance point may correspond to direction of arrival of a signal on the one or more array elements.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: May 19, 2020
    Assignee: Raytheon Company
    Inventor: James M. Bowden
  • Patent number: 10649094
    Abstract: A method for detecting a multipath effect in a GNSS receiver which is designed to receive different signals from a GNSS satellite and includes a parameter which is determined from directly received signals and has a substantially constant target value, including the steps receiving at least two mutually independent signals; determining a current parameter value from at least the first and the second signal; evaluating the parameter value in relation to the target value, and detecting a multipath effect when the parameter value has a deviation (?K) which deviates from the already known target value.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: May 12, 2020
    Assignee: Continental Teves AG & Co. oHG
    Inventor: Michael Zalewski