Patents Examined by Dapinder Singh
  • Patent number: 10288014
    Abstract: A method for operating an internal combustion engine is provided. The method includes closing an EGR valve positioned in an exhaust gas recirculation (EGR) conduit downstream of an EGR cooler, the EGR conduit coupled to an intake system and an exhaust system and determining a profile of exhaust pressure waves in the exhaust system. The method also includes adjusting a volume of variable volume vessel based on the profile of the exhaust pressure waves, the variable volume vessel positioned downstream of the EGR cooler and upstream of the EGR valve.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: May 14, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Andreas Kuske, Hans Guenter Quix, Franz Arnd Sommerhoff, Joerg Kemmerling, Vanco Smiljanovski, Helmut Matthias Kindl, Hanno Friederichs
  • Patent number: 10280808
    Abstract: A Rankine cycle system includes a boiler configured to apply waste heat to refrigerant circulating in an internal-combustion engine to vaporize the refrigerant; a gas-liquid separator configured to separate gas-liquid two-phase refrigerant, sent from the boiler, into gas phase fluid and liquid phase fluid; a superheater configured to superheat the gas phase fluid, sent from the gas-liquid separator, through heat exchange with exhaust gas of the internal-combustion engine; an expander configured to expand the gas phase fluid, passing through the superheater, to recover thermal energy, and a condenser configured to condense the gas phase fluid, passing through the expander, to return the gas phase fluid to liquid phase fluid. The gas-liquid separator is connected to the internal combustion engine via a refrigerant pipe. The internal combustion engine is fixed onto an engine mount of a vehicle. The gas-liquid separator is fixed to the internal combustion engine via a bracket.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: May 7, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Manabu Tateno
  • Patent number: 10280856
    Abstract: An exhaust treatment catalyst (13) arranged in an engine exhaust passage and a heat and hydrogen generation device (50) are provided. The amount of fuel fed to the heat and hydrogen generation device (50), which is required for making the temperature of the exhaust treatment catalyst (13) rise by exactly a predetermined temperature rise by heat and hydrogen fed from the heat and hydrogen generation device (50) when the exhaust treatment catalyst (13) is not poisoned and does not thermally deteriorate, is calculated based on the amount of exhaust gas. When fuel of the reference feed fuel amount corresponding to the amount of exhaust gas is fed to the heat and hydrogen generation device (50) and the temperature rise of the exhaust treatment catalyst (13) fails to reach the predetermined temperature rise, the treatment for restoration from poisoning of the exhaust treatment catalyst (13) is performed.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: May 7, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kiyoshi Fujiwara, Shinichi Takeshima, Hiromasa Nishioka
  • Patent number: 10273846
    Abstract: The disclosure relates to an electric exhaust-gas catalytic converter that has a heating device. The heading device includes a first heating element and a second heating element that are arranged separately from one another upstream and downstream of an active catalysis region of the electric exhaust-gas catalytic converter. The disclosure also relates to a vehicle which includes the electric exhaust-gas catalytic converter and to a method for operating the electric exhaust-gas catalytic converter.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: April 30, 2019
    Assignee: Continental Automotive GmbH
    Inventors: Simon Baensch, Thomas Knorr
  • Patent number: 10273855
    Abstract: A mixer assembly for mixing an injected reductant with an exhaust gas output from a combustion engine comprises a mixer housing including a wall defining an exhaust passageway having a longitudinal axis. A tubular swirling device housing extends along a first axis substantially transverse to the longitudinal axis. The tubular swirling device includes a plurality of openings through which exhaust gas enters. The exhaust gas within the tubular swirling device swirls about the first axis and exits at an outlet end of the tubular swirling device. A mixing plate is positioned immediately downstream of the tubular swirling device. The mixing plate swirls the exhaust about a second axis extending parallel to the longitudinal axis.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: April 30, 2019
    Assignee: Tenneco Automotive Operating Company Inc.
    Inventors: Lawrence J. Noren, IV, Daniel J. Owen, Jeffrey W. Denton, Attila Kovacs, Eric A. Hein, Meng-Huang Lu, Manoj K. Sampath
  • Patent number: 10273909
    Abstract: Provided is a catalytic converter to be disposed in a branch portion between an exhaust gas passage that guides exhaust gas from an internal combustion engine to outside and an exhaust gas recirculation passage that recirculates a portion of the exhaust gas from the exhaust gas passage to an intake system of the internal combustion engine. The catalytic converter comprises a catalyst storage case that stores a catalyst, a recirculation pipe that forms the exhaust gas recirculation passage, an abutment portion that makes the catalyst storage case and the recirculation pipe be in surface contact with each other and be arranged in parallel to each other, and a downstream cone that makes the exhaust gas passage and the exhaust gas recirculation passage merge with each other.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: April 30, 2019
    Assignee: Futaba Industrial Co., Ltd.
    Inventor: Katsuhisa Takagi
  • Patent number: 10267192
    Abstract: An exhaust purification system of an internal combustion engine comprising an exhaust treatment catalyst (13) arranged in an engine exhaust passage and a heat and hydrogen generation device (50) able to feed only heat or heat and hydrogen to the exhaust treatment catalyst (13). When the warm-up operation of the heat and hydrogen generation device (50) is completed and a reforming action by a reformer catalyst (54) becomes possible, if the temperature of the exhaust treatment catalyst (13) is a preset activation temperature or more, a partial oxidation reaction is performed at the heat and hydrogen generation device (50) and the generated heat and hydrogen are fed to the exhaust treatment catalyst (50). At this time, if the temperature of the exhaust treatment catalyst (13) is less than the preset activation temperature, a complete oxidation reaction by a lean air-fuel ratio is continued and a heat is fed to the exhaust treatment catalyst (13).
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: April 23, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Takeshima, Hiromasa Nishioka, Kiyoshi Fujiwara
  • Patent number: 10267208
    Abstract: A cooling structure of an engine includes a cylinder head and a coolant temperature sensor. The cylinder head gas a first water jacket for cooling a combustion chamber and a second water jacket for cooling an exhaust manifold. The cylinder head includes a joining portion where coolants from the first water jacket and the second water jacket join together. The joining portion has a first coolant passage. A second coolant passage is disposed downstream of the joining portion. The temperature sensing portion is disposed in the second coolant passage. A coolant outlet of the second water jacket is defined in the first coolant passage, and is located at a position on the cylinder head cover attachment surface side in the first coolant passage. The temperature sensing portion is located at a position on the cylinder block attachment surface side in the second coolant passage.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: April 23, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masahito Kudo, Takashi Matsutani
  • Patent number: 10267255
    Abstract: An internal combustion engine comprises an exhaust purification catalyst and a downstream side air-fuel ratio sensor which is arranged at a downstream side of the exhaust purification catalyst. A control system can perform fuel cut control which stops the feed of fuel to the internal combustion engine during operation of the internal combustion engine, and, after the end of fuel cut control, performs post-return rich control which sets the exhaust air-fuel ratio to a rich air-fuel ratio.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: April 23, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shuntaro Okazaki
  • Patent number: 10260394
    Abstract: An auto-calibration controller configured to automatically tune a dosing unit of an aftertreatment system. The auto-calibration controller is configured to command the dosing unit to dose reductant at a first dosing command rate at a first input pressure value based on a dosing command value of a dosing command table. The auto-calibration controller is further configured to interpret a parameter indicative of an actual amount of dosed reductant by the dosing unit and compare the actual amount of dosed reductant to an expected amount of dosed reductant. The auto-calibration controller is further configured to update the dosing command value of the dosing command table of a control module of the aftertreatment system responsive to the comparison of the actual amount of dosed reductant to the expected amount of dosed reductant.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: April 16, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Patrick C. Hudson, Nassim Khaled
  • Patent number: 10260439
    Abstract: A control apparatus for an internal combustion engine executes a detection process upon satisfaction of all detection preconditions including a stopped condition that a temperature-increasing process has been stopped; determines Whether all the detection preconditions except the stopped condition are satisfied, during the temperature-increasing process; executes a gradually-changing-and-stopping process of stopping the temperature-increasing process by gradually changing the air-fuel ratios in the cylinders to a target air-fuel ratio set based on an operation state of the internal combustion engine after stop of the temperature-increasing process, when a negative determination is made and a temperature-increasing process stop request has been issued; and executes a promptly-stopping process of stopping the temperature-increasing process by changing the air-fuel ratios in the cylinders to the target air-fuel ratio within a shorter time period than that of the gradually-changing-and-stopping process, when an af
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: April 16, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Kazuki Tsuruoka
  • Patent number: 10253656
    Abstract: A Rankine cycle system includes a boiler configured to apply waste heat to refrigerant circulating in an internal-combustion engine to vaporize the refrigerant; a gas-liquid separator configured to separate gas-liquid two-phase refrigerant, sent from the boiler, into gas phase fluid and liquid phase fluid; a superheater configured to superheat the gas phase fluid, sent from the gas-liquid separator, through heat exchange with exhaust gas of the internal-combustion engine; an expander configured to expand the gas phase fluid, passing through the superheater, to recover thermal energy, and a condenser configured to condense the gas phase fluid, passing through the expander, to return the gas phase fluid to liquid phase fluid. The gas-liquid separator is fixed to a cylinder head of the internal-combustion engine. It is preferable that the gas-liquid separator is configured to include a bracket, and is fixed to the cylinder head via the bracket.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: April 9, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Manabu Tateno
  • Patent number: 10233804
    Abstract: A particulate filter (1) is provided having a first wall flow region (2) and a second flow through region (3). The filter is provided with a catalytic washcoat, whereby the filter can be used to remove both particulate matter and harmful gaseous emissions from an exhaust gas stream.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: March 19, 2019
    Assignee: JAGUAR LAND ROVER LIMITED
    Inventors: Stephen Cudmore, Jonathan Hartland, Jamil Khan, Ken Hansen
  • Patent number: 10227941
    Abstract: A vehicle propulsion system includes an internal combustion engine configured to output a primary output torque and at least one fuel injector arranged to supply fuel to a combustion chamber of the engine. The propulsion system also includes at least one exhaust aftertreatment device to capture combustion byproducts within an exhaust flow. The propulsion system also includes an electric machine coupled to the engine to exchange torque. A controller is programmed to supply a baseline fuel injection corresponding to a first engine output to satisfy a driver torque demand and to periodically supplement the baseline target fuel injection quantity to increase engine output torque to overshoot the first engine output thereby increasing combustion byproducts to regenerate the at least one exhaust aftertreatment device. The controller is also programmed to apply a resistive torque from the electric machine such that an overall propulsion system torque remains at the driver torque demand.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: March 12, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Yue-Yun Wang, Venkata Prasad Atluri, Suresh Gopalakrishnan, Alberto Lorenzo Vassallo
  • Patent number: 10221741
    Abstract: An exhaust gas control apparatus has an exhaust gas control element other than an SCR catalyst. A temperature increase treatment unit executes temperature increase treatment that increases temperature of exhaust gas flowing into the exhaust gas control apparatus so as to increase the temperature of the exhaust gas control element to a specified target temperature. In this case, when operation of the internal combustion engine is stopped while the temperature increase treatment unit is not executing the temperature increase treatment, addition of an additive to the SCR catalyst from an addition valve is executed after operation stop of the internal combustion engine. When operation of the internal combustion engine is stopped while the temperature increase treatment unit is executing the temperature increase treatment, addition of the additive to the SCR catalyst from the addition valve is not executed after operation stop of the internal combustion engine.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: March 5, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinya Asaura, Masaaki Sato, Ryohei Ono
  • Patent number: 10215071
    Abstract: An exhaust gas aftertreatment unit includes a selective catalytic reduction device that treats engine exhaust gas, a connecting pipe that guides the engine exhaust gas to the reduction device, a reducing agent injection device disposed on the connecting pipe to inject a reducing agent into the exhaust gas, and a cooling water flowpath that guides cooling water to an internal flowpath of the injection device. The cooling water path includes a first flowpath joined with the internal flowpath, second and third flowpaths branching off from the first flowpath, and a branching point where the first flowpath branches into the second flowpath and the third flowpath is positioned higher than a connecting portion of the injection device and the first flowpath. The third flowpath extends further upward than the second flowpath from the branching point. The second and third flowpaths merge on an opposite side of the branching point.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: February 26, 2019
    Assignee: KOMATSU LTD.
    Inventors: Hiroyuki Mizuno, Satoru Ide, Daisuke Kodani
  • Patent number: 10208696
    Abstract: Disclosed are engine torque and emission control (ETEC) systems, methods for using such systems, and motor vehicles with engines employing ETEC schemes. An ETEC system is disclosed for operating an internal combustion engine (ICE) assembly. The system includes an engine sensor for monitoring engine torque, an exhaust sensor for monitoring nitrogen oxide (NOx) output of the ICE assembly, and an engine control unit (ECU) communicatively connected to the engine sensor, exhaust sensor, and ICE assembly.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: February 19, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Yue-Yun Wang, Ibrahim Haskara, Chen-fang Chang
  • Patent number: 10197000
    Abstract: Methods and systems are provided for diagnosing a humidity sensor positioned in an intake system of a vehicle engine system. In one example, a method comprises rotating an engine unfueled in reverse and injecting a fluid into an exhaust system of the engine system, to draw the fluid into the intake system, where a humidity sensor output signal greater than a baseline output signal by a predetermined threshold is indicative of a humidity sensor that is functioning as desired. In this way, a humidity sensor may be periodically rationalized which may prolong engine lifetime by ensuring the engine is operating at optimal parameters.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: February 5, 2019
    Assignee: Ford Global Technologies, LLC
    Inventor: Aed M. Dudar
  • Patent number: 10196967
    Abstract: A supercharging device is provided for an internal combustion engine that has at least one exhaust gas turbocharger (1, 2) and at least one charge air cooler (LLK) arranged in the outflow of the exhaust gas turbocharger (1, 2). An additional electrically driven compressor (e-booster 6, 7) is arranged downstream of the charge air cooler (LLK) in a bypass (5) to the main flow line (3) to the throttle valve (4) of the internal combustion engine. The main flow line (3) can be closed by a check valve (9) that acts in the direction of a return flow.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: February 5, 2019
    Assignee: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventors: Erwin Rutschmann, Peter Rothenberger
  • Patent number: 10196956
    Abstract: A method is disclosed for controlling an injector for injecting a reductant into a selective catalytic reduction system of an internal combustion engine. A value of a concentration of nitrogen-oxides in the exhaust gas aftertreatment system downstream of the selective catalytic reduction system is measured, and a first difference is calculated between the measured value of the nitrogen-oxides concentration and a predetermined reference value thereof. A value of a concentration of ammonia in the exhaust gas aftertreatment system downstream of the selective catalytic reduction system is measured, and a second difference is calculated between the measured value of the ammonia concentration and a predetermined reference value thereof. A quantity of reductant to be injected by the injector is calculated as a function of the calculated first difference and second difference, and the injector is operated to inject the calculated quantity of reductant.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: February 5, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Vincenzo Alfieri, Giuseppe Mazzara Bologna, Giuseppe Conte, Alberto Bemporad, Daniele Bernardini