Patents Examined by David A Singh
  • Patent number: 10491117
    Abstract: A buck converter includes a power switch having a first end to receive an input voltage, and a soft start circuit configured to compensate a soft start voltage during a soft start time period according to a result of comparing a feedback voltage corresponding to an output voltage of the buck converter and an input detection voltage corresponding to the input voltage. The buck converter controls switching of the power switch using the soft start voltage.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: November 26, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: SangCheol Moon, Gwanbon Koo, Chenghao Jin, Bonggeun Chung
  • Patent number: 10476476
    Abstract: A MEMS resonator is provided with improved electrical characteristics and reduced spurious resonances. The MEMS resonator includes two or more first rectangular resonator plates with lengths greater than their respective widths. Moreover, the MEMS resonator includes two or more second rectangular resonator plates that are positioned parallel to the first resonator plates in the widthwise direction of the MEMS resonator. The length of the second resonator plates is different than the length of the first resonator plates to reduce spurious resonances.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: November 12, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Ville Kaajakari
  • Patent number: 10461640
    Abstract: An apparatus may include a power converter having a power supply input for receiving an input power supply voltage generated by a power supply, an output for generating an output voltage to a load, and a power inductor coupled between the power supply input and the output may and further include an energy storage element coupled to the power supply input, the power inductor, and the output such that operation of the power inductor is split temporally between delivering energy to the energy storage element and delivering energy to the load, and operation of the energy storage element is split temporally between delivering energy to the load and receiving energy from one or both of the power supply and the load.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: October 29, 2019
    Assignee: Cirrus Logic, Inc.
    Inventors: Eric J. King, Siddharth Maru, John L. Melanson
  • Patent number: 10439491
    Abstract: A power supply electronic circuit comprises: an intermediate bus converter (IBC), arranged to convert a voltage inputted to the IBC to an intermediate bus voltage on an intermediate bus; at least one direct current to direct current (DC-DC) or point of load (POL) converter, connected to the intermediate bus and arranged to convert the intermediate bus voltage to a voltage for feeding a load; and a capacitor tank connected to the intermediate bus and arranged as hold up capacitor tank to preserve power supply to the load. The IBC comprises a current ripple control circuit for suppressing current ripple in an input of the power supply electronic circuit.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: October 8, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventor: Jingxu Gu
  • Patent number: 10439489
    Abstract: A hybrid-mode boost power factor corrector includes an inductor, a switch unit, a diode unit, a current-detecting unit, and a control unit. The inductor is coupled to a DC input power source. The switch unit is coupled to the inductor and a ground. The diode unit is coupled to the inductor and the switch unit. The current-detecting unit receives an inductor current flowing through the inductor and provides a current detection signal corresponding to the inductor current. The control unit is coupled to the current-detecting unit to receive the current detection signal. When the hybrid-mode boost power factor corrector is operated in a light-load condition, the control unit samples a peak value of the current detection signal; when the hybrid-mode boost power factor corrector is operated in a heavy-load condition, the control unit samples an average value of the current detection signal.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: October 8, 2019
    Assignee: Chicony Power Technology Co., Ltd.
    Inventors: Hsien-Yi Tsai, Yu-Chen Liu
  • Patent number: 10429875
    Abstract: A power management circuit generates a reference voltage and distributes it to a plurality of independently-enabled regulator voltage reference circuits, each of which generates a predetermined voltage for a voltage regulator. Separate enable signals and enable pre-charge signals are distributed to each regulator voltage reference circuit. As a regulator voltage reference circuit is enabled via its associated enable signal, an enable pre-charge signal is also asserted for an initial duration. Each regulator voltage reference circuit includes a voltage setting circuit and a first current limiting transistor in series and operative to interrupt current to the voltage setting circuit when the regulator voltage reference circuit is disabled. A second current limiting transistor is configurably configured as a current mirror with the first current limiting transistor, and a pre-charge bias current from a current source passes through the second transistor.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: October 1, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Mikko Lintonen, Marko Pessa
  • Patent number: 10432092
    Abstract: A controller is configured to perform self-calibration to maintain approximately a desired switching frequency of a power converter. The self-calibration performed by the controller at least partially mitigates detrimental effects associated with variation in an actual switching frequency of the power converter from a designed switching frequency. The controller maintains approximately the desired switching frequency, in one example, in view of a delay inherent in the control by the controller of the power converter.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: October 1, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Zhangyi Xie, Zhenglin Pu, Yu Wang
  • Patent number: 10423188
    Abstract: In a voltage generating circuit, a bandgap voltage generator has a first operational amplifier to receive a first voltage and a second voltage, and generate a bias voltage by comparing the first voltage and the second voltage, wherein the bandgap voltage generator generates a bandgap current according to the bias voltage and generates an output voltage according to the bandgap current. In a start-up circuit, a comparison circuit compares the first voltage or the second voltage with a reference voltage to generate a first comparison result, and generates a first current according to the first comparison result. A voltage regulator generates a second current according to the first current, and compares the second current with a reference current to generate a second comparison result, and adjusts a voltage value of the bias voltage according to the second comparison result.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: September 24, 2019
    Assignee: Faraday Technology Corp.
    Inventor: Jin-Sheng Chen
  • Patent number: 10418896
    Abstract: A switching regulator includes: an error amplification circuit configured to amplify a difference between a voltage based on the output voltage and a first reference voltage to output an error voltage; a PFM comparison circuit configured to compare the error voltage with a second reference voltage to output a comparison result signal at a first level or a second level, an offset being given to the error voltage for a given period in response to a change of the comparison result signal from the second level to the first level; an oscillation circuit configured to output a clock signal of a given frequency according to the first level of the comparison result signal, and to stop outputting the clock signal according to the second level of the comparison result signal; and a PWM conversion circuit configured to turn the switching element on at a prescribed pulse width.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: September 17, 2019
    Assignee: ABLIC INC.
    Inventor: Kosuke Takada
  • Patent number: 10401886
    Abstract: A system may include a first voltage reference for generating a first voltage for operating a circuit, a second voltage reference having a higher precision than the first voltage reference, and a controller. The controller may be configured to determine a presence or an absence of a condition for calibrating the first voltage reference. The controller may also be configured to, responsive to the presence of the condition, enable the second voltage reference to generate a second voltage for calibrating the first voltage reference. The controller may further be configured to, responsive to the absence of the condition, disable the second voltage reference.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: September 3, 2019
    Assignee: Cirrus Logic, Inc.
    Inventors: John L. Melanson, Rahul Singh, Prashanth Drakshappalli, Dale Brummel
  • Patent number: 10389262
    Abstract: A device (2) for the on-demand commutation of an electrical current from a first line branch (14, 3; 36) to another, second line branch (4; 41; 71) is created, which has a number of power semiconductor switching elements (7; 47; 53), which are arranged in series and/or parallel to one another in the second line branch (4; 41; 71), and a control unit (18; 51) for controlling the number of power semiconductor switching elements (7; 47; 53). The control unit (18; 51) is adapted to apply to each of the number of power semiconductor switching elements (7; 47; 53) an increased control voltage (VGE) whose level is above the maximum permissible control voltage specified for continuous operation, in order to switch on or maintain the conduction of the number of power semiconductor switching elements and to cause an increased current flow through it, whose current rating is at least double the nominal operating current.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: August 20, 2019
    Assignee: GE ENERGY POWER CONVERSION TECHNOLOGY LTD
    Inventors: Roland Jakob, Martin Geske, Kowalsky Jens, Josef Lutz
  • Patent number: 10389247
    Abstract: A power conversion device according to one or more embodiments may include: a microcomputer; and an output circuit controlled by the microcomputer, including an output unit that converts an input power into a predetermined power and outputs the predetermined power, an internal power source that supplies a power source to the microcomputer, a driver that drives the output unit by a signal from the microcomputer, and a microcomputer stop transition unit that, when an operation of the power conversion device is stopped, outputs a microcomputer stop signal to the microcomputer and causes an operation of the microcomputer to transition to a stop state. In one or more embodiments, after the microcomputer stop transition unit causes the operation of the microcomputer to transition to a stop state, the microcomputer or the output circuit may stop an output of the internal power source.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: August 20, 2019
    Assignee: SANKEN ELECTRIC CO., LTD.
    Inventors: Junichi Takada, Mitsutomo Yoshinaga, Toshihiro Nakano, Koki Imai, Osamu Ohtake
  • Patent number: 10355585
    Abstract: A variable frequency drive (VFD) circuit includes an input connectable to an AC source, a rectifier to convert an AC power input to a DC power, a DC link to receive DC power from the rectifier and having a DC link voltage thereon, a DC link capacitor bank with one or more capacitors connected to the DC link, and a pre-charge circuit coupled to the DC link capacitor. The pre-charge circuit further includes one or more resistors, one or more pre-charge relays each operable in on and off states to selectively control a current flow through the resistor(s) so as to control an initial pre-charge of the DC link capacitor, and an overvoltage relay operable in on and off states to selectively cut-off a current flow to the DC link capacitor bank, so as to prevent an overvoltage condition in the DC link capacitor bank.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: July 16, 2019
    Assignee: Eaton Intelligent Power Limited
    Inventors: Huaqiang Li, Youdong He, Xiaoling Li
  • Patent number: 10355607
    Abstract: An excessive voltage rise of load voltage, caused by an impedance mismatching on a transmission path, is prevented, and high-frequency power is regenerated. A parallel impedance is connected to the transmission path during the voltage rise, thereby regenerating voltage caused by a standing wave and preventing excessive load voltage, together with enhancing energy usage efficiency. Establishing the parallel impedance for the load impedance, on the transmission path between the high-frequency amplifier circuit of the high-frequency power supply device and the high-frequency load, reduces impedance at the connecting position to prevent generation of excessive voltage on the transmission path, and high-frequency power is regenerated from the transmission path by the parallel impedance.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: July 16, 2019
    Assignee: KYOSAN ELECTRIC MFG. CO., LTD.
    Inventors: Itsuo Yuzurihara, Satoshi Aikawa, Ryosuke Ohma
  • Patent number: 10333406
    Abstract: An electric power converter includes a chopper circuit, a DC-DC converter coupled to an output of the chopper circuit, a first transformer including a first primary coil and a first secondary coil, a second transformer including a second primary coil and a second secondary coil, a first capacitor coupled between an output of the DC-DC converter and the first primary coil, a second capacitor coupled between the output of the DC-DC converter and the second primary coil, a first rectifier circuit coupled to the first secondary coil, and a second rectifier circuit coupled to the second secondary coil. A first output voltage of the first rectifier circuit is adjusted by adjusting an output voltage of the chopper circuit, and a second output voltage of the second rectifier circuit is adjusted by adjusting a powering time during one switching period of the DC-DC converter.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: June 25, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Yasunao Saga
  • Patent number: 10331150
    Abstract: A power supply device and current equalization method wherein the device includes: a plurality of power modules connected in parallel and a plurality of current equalization modules; two adjacent power modules corresponding to a current equalization module, each power module including: voltage output unit, power stage unit, and control unit; each current equalization module including: first and second current sampling conversion units, and error comparison unit; by using the error comparison unit to compare difference between load currents of two adjacent power modules and generating corresponding first control voltage based on the load currents, and the control unit generating the second control voltage based on the first control voltage to control the power stage unit to change the output voltage according to the second control voltage changing. The device accurately achieves current equalization of power modules connected in parallel and simplifies complexity of power supply device.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: June 25, 2019
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Bobiao Chang
  • Patent number: 10333309
    Abstract: An arrangement includes at least one series circuit having at least two series-connected submodules and an inductor. At least one of the submodules in one or a plurality of the series circuits has a step-up/step-down converter and a storage module. A protective module with at least one actuator is electrically connected between the step-up/step-down converter and the storage module. A method for operating the arrangement is also provided.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: June 25, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rodrigo Alonso Alvarez Valenzuela, Martin Pieschel, Ervin Spahic
  • Patent number: 10326374
    Abstract: Presented is a converter circuit having main switching circuiton a primary side of a transformer, for controlling supply of a current to a storage inductor on the primary side when the main switching circuit is conductive. The convertor circuit comprises: a control circuit operatively coupled to the main switching circuit and for controlling the main switching circuit, the control circuit comprising a control capacitor adapted to enable the control circuit and turn off the main switching circuit; an auxiliary inductor magnetically coupled to the storage inductor and adapted to trigger the control circuit to operate and turn off the main switching circuit in response to a voltage change in the storage inductor when the main switching circuit being conductive; and a charging circuit coupled between the auxiliary inductor and the control capacitor and adapted to enable the auxiliary inductor to charge the control capacitor.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: June 18, 2019
    Assignee: SIGNIFY HOLDING B.V.
    Inventor: Zhi Quan Chen
  • Patent number: 10312806
    Abstract: The present disclosure provides a voltage converter for simulating inductor current control, which simulates an inductor current of a power level circuit according to operation signals generated by a control circuit, an input voltage, and an output voltage, thereby achieving detection of the inductor current by using a non-sensing method. Therefore, compared to a conventional sensing method, the voltage converter of the present disclosure can reduce use of a sensing circuit to reduce costs, and an inductor current ramp generated thereby has no distortion. Accordingly, the voltage converter of the present disclosure can improve the accuracy of inductor current detection.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: June 4, 2019
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Chih-Yuan Chen, Zhan-Zhe Huang
  • Patent number: 10296071
    Abstract: A power converter includes primary and secondary bridges, a transformer, and a controller configured to generate a switching mode map that correlates each of a plurality of switching modes to a respective set of value ranges of system parameters of the power converter. The sets of system parameter value ranges are contiguous and non-overlapping across the switching mode map, each of the plurality of switching modes includes gate trigger voltage timings for commuting at least one of the primary and secondary bridges. The controller is configured to obtain a plurality of measured system parameter values, select from the switching mode map one of the plurality of switching modes that correlates to the set of system parameter values containing the plurality of measured system parameter values, and adjust gate trigger voltage timings of at least one of the primary and secondary bridges, according to the selected switching mode.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: May 21, 2019
    Assignee: GE GLOBAL SOURCING LLC
    Inventors: Simon Herbert Schramm, Said Farouk Said El-Barbari, Stefan Schroeder, Zhihui Yuan