Patents Examined by David A Singh
  • Patent number: 9941789
    Abstract: A method may comprise receiving a first clock signal; receiving a digital duty cycle value; using the first clock signal and digital duty cycle value to generate a digital pulse width modulation (DPWM) signal having a plurality of discrete steps to control a switch of a switched-mode power supply; and using a voltage control circuit to modify a duration of each of the plurality of discrete steps of the DPWM signal, wherein the voltage control circuit is configured to receive an analog voltage input.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: April 10, 2018
    Assignee: Infineon Technologies AG
    Inventor: Derek Bernardon
  • Patent number: 9941799
    Abstract: A cascade power system includes a non-isolated buck converter in cascade with an isolated Class-E resonant circuit, where the Class-E resonant circuit operates at high frequency, for example 4 Mhz. Further, the non-isolated buck converter is configured as a current source coupled to the Class-E resonant circuit which provides a buck converter output voltage as input to the Class-E resonant circuit. The Class-E resonant circuit includes capacitive isolation for the cascade power system output.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: April 10, 2018
    Assignee: Flextronics AP, LLC
    Inventors: Mark Telefus, Peter Ramos Yeo, Aldimarl Mantilla Navarro, Bahman Sharifipour
  • Patent number: 9935544
    Abstract: A method for transferring power between two DC circuits, each circuit being bipolar or connected at the midpoint thereof, involves: coupling the high voltage bus across a pair of inductors, arranged in parallel; coupling the low voltage bus across the pair of inductors; coupling the high voltage bus, the low voltage bus and the inductors by active switches and diodes, to provide for: (i) a storage configuration, wherein energy is transferred from one of the buses and stored in the inductors; and (ii) a release configuration, wherein energy is released from the inductors and transferred to the other of the buses.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: April 3, 2018
    Assignee: Arda Power Inc.
    Inventors: Luis Zubieta, Damien Frost
  • Patent number: 9933807
    Abstract: An in-rush current controller to turn-on a semiconductor output switch is described. The output switch is arranged in series with an output capacitor. The switch comprises a switch control port for controlling an output current and an output voltage. The controller comprises an amplifier to source or sink a switch control current to or from the switch control port, wherein the switch control current is dependent on an amplifier control current at an amplifier control port. The controller comprises a reference current source to provide a reference current at the amplifier control port, subject to a control signal indicating that the output switch is to be turned on. Furthermore, the controller comprises a feedback capacitor to provide a feedback current at the amplifier control port in dependence of a variation of the output voltage.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: April 3, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Mohammad Masoumi, Frank Kronmueller, Robert Prinz
  • Patent number: 9935551
    Abstract: A high-withstand-voltage normally-on transistor and a low-withstand-voltage normally-off transistor are connected in series, and diodes are provided in reverse parallel to the transistor. A gate terminal of the transistor is connected to a source terminal of the transistor, and a gate driving circuit that outputs a control signal to a gate terminal of the transistor is provided. Forward voltage of the diode is made lower than forward voltage of the diode, and an inductance component of a path connecting nodes via the diode is made greater than an inductance component of a path connecting the nodes via the diode. Accordingly, a switching circuit which includes transistors connected in series and in which transient current at a time of turning off is reduced is provided.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: April 3, 2018
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kohtaroh Kataoka, Takeshi Shiomi, Shuji Wakaiki, Hiroki Igarashi, Akihide Shibata, Hiroshi Iwata
  • Patent number: 9935545
    Abstract: A power supply unit arrangement for an electronic device includes a first switching converter with a first control loop that provides a controlled output voltage (DC-out) at a node; a second switching converter with a second control loop that alternatively provides the controlled output voltage (DC-out) at the node; and an open-loop control circuit connected to the first control loop and the second control loop, wherein the open-loop control circuit, upon a changeover of the current supply from the first switching converter to the second switching converter, sets a predetermined control state of the first control loop and deactivates the first switching converter and, upon a changeover of the current supply from the second switching converter to the first switching converter, reactivates the first switching converter using the predetermined control state.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: April 3, 2018
    Assignee: Fujitsu Technology Solutions Intellectual Property GmbH
    Inventors: Peter Busch, Willi Sterzik
  • Patent number: 9904309
    Abstract: A power management circuit generates a reference voltage and distributes it to a plurality of independently-enabled regulator voltage reference circuits, each of which generates a predetermined voltage for a voltage regulator. Separate enable signals and enable pre-charge signals are distributed to each regulator voltage reference circuit. As a regulator voltage reference circuit is enabled via its associated enable signal, an enable precharge signal is also asserted for an initial duration. Each regulator voltage reference circuit includes a voltage setting circuit and a first current limiting transistor in series and operative to interrupt current to the voltage setting circuit when the regulator voltage reference circuit is disabled. A second current limiting transistor is configurably configured as a current mirror with the first current limiting transistor, and a pre-charge bias current from a current source passes through the second transistor.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: February 27, 2018
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Mikko Lintonen, Marko Pessa
  • Patent number: 9893635
    Abstract: An isolated switching converter includes a transformer, a primary circuit, a rectifying circuit and an optocoupler with a photo-sensitive device and a light emitting device, wherein the light emitting device has a first terminal coupled to an output voltage of the switching converter. A method for controlling the switching converter includes: sensing the output voltage and generating a voltage feedback signal; generating an error amplifying signal based on a reference signal and the voltage feedback signal, and providing the error amplifying signal to a second terminal of the light emitting device; disconnecting the error amplifying signal from the second terminal of the light emitting device if the error amplifying signal becomes lower than a first threshold voltage; and reconnecting the error amplifying signal to the second terminal of the light emitting device when the voltage reference signal becomes lower than a second threshold voltage.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: February 13, 2018
    Inventor: Sicong Lin
  • Patent number: 9886044
    Abstract: A dynamic current sink includes the following elements. A voltage comparator compares a reference voltage with a second control signal from an LDO (Low Dropout Linear Regulator) to generate a first control signal. A first transistor selectively pulls down a voltage at a first node according to the first control signal. The inverter is coupled between the first node and a second node. An NAND gate has a first input terminal coupled to a second transistor and a third node, a second input terminal coupled to the second node, and an output terminal coupled to a fourth node. A capacitor is coupled between the fourth node and a fifth node. A resistor is coupled between the fifth node and a ground voltage. A third transistor has a control terminal coupled to the fifth node, and selectively draws a discharge current from an output node of the LDO.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: February 6, 2018
    Assignee: MEDIATEK INC.
    Inventors: Chin-Hsun Chen, Hao-Yuan Lin, Chia-Hua Chou
  • Patent number: 9876438
    Abstract: In a converter unit system, converter units are connected in parallel. The converter unit includes a converter circuit connected to an AC power supply and a DC bus, a first inrush-current suppression resistor connected to the DC bus, a first contactor connected in parallel to the first inrush-current suppression resistor, a smoothing capacitor provided after the first inrush-current suppression resistor and the first contactor, a second contactor externally outputting ON/OFF signal, a voltage detection unit measuring a DC voltage value across the smoothing capacitor, and a control unit controlling the first contactor and the second contactor. The converter unit system includes a third contactor connected to the converter units, and a second inrush-current suppression resistor connected in parallel to the third contactor. When contacts of the second contactors are all closed, a contact of the third contactor is closed.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: January 23, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventor: Masanori Kato
  • Patent number: 9859792
    Abstract: A switching-capacitor regulator with a charge injection mode for a high loading current is used to generate an output voltage at an output node, where the switching-capacitor regulator includes a storage capacitor, a switch module, a current source and a control unit. The switch module is coupled between the storage capacitor, a first supply voltage, a second supply voltage and the output node. The current source is coupled to the output node, and is used for selectively providing a current to the output node.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: January 2, 2018
    Assignee: Silicon Motion Inc.
    Inventor: Tsun-Hsin Wang
  • Patent number: 9847719
    Abstract: A power supplier for generating a supply voltage includes a PWM signal generator, a power conversion circuit, and first and second error amplifiers. The PWM signal generator generates at least one switching signal according to a voltage error signal. The power conversion circuit generates a switching voltage to an inductor according to the at least one switching signal so as to generate the supply voltage. The first error amplifier detects the difference between a positive voltage signal and a reference voltage. The second error amplifier detects the difference between a negative voltage signal and a ground voltage. Output terminals of the first and second error amplifiers are coupled to a first node. The voltage error signal is generated at the first node. The PWM signal generator modulates a duty cycle of the switching signal according to the variation of the voltage error signal.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: December 19, 2017
    Assignee: INTEL CORPORATION
    Inventor: Ming-Xiang Lu
  • Patent number: 9843267
    Abstract: In a converter unit system, converter units are connected in parallel. The converter unit includes a converter circuit connected to an AC power supply and a DC bus, a first inrush-current suppression resistor connected to the DC bus, a first contactor connected in parallel to the first inrush-current suppression resistor, a smoothing capacitor provided after the first inrush-current suppression resistor and the first contactor, a second contactor externally outputting ON/OFF signal, a voltage detection unit measuring a DC voltage value across the smoothing capacitor, and a control unit controlling the first contactor and the second contactor. The converter unit system includes a third contactor connected to the converter units, and a second inrush-current suppression resistor connected in parallel to the third contactor. When contacts of the second contactors are all closed, a contact of the third contactor is closed.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: December 12, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventor: Masanori Kato
  • Patent number: 9837926
    Abstract: A rectifier is configured to convert a three-phase AC voltage to a 12-pulse DC voltage, drawing a 12-pulse AC current from a three-phase network. The rectifier may comprise a first interleaved phase-leg, a second interleaved phase-leg, and/or a third interleaved phase-leg. Respective interleaved phase-legs may comprise positive portions configured to conduct positive current from a transformer towards a load, and negative portions configured to conduct negative current from the load back to the transformer. The rectifier may be configured to sequentially cycle respective interleaved phase-legs into positive and/or negative 120 conducting states over a 360 degree cycle to output the 12-pulse DC voltage. For example, during a first 120 degree conducting state a positive portion of the first interleaved phase-leg may conduct positive current towards the load, while a negative portion of a different phase-leg may conduct negative current back to the transformer.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: December 5, 2017
    Assignee: ABB SCHWEIZ AG
    Inventor: Rolando Burgos
  • Patent number: 9825550
    Abstract: A bi-directional power converter includes a first terminal, a second terminal, a third terminal, a fourth terminal, a first converter, a second converter, a power driver, and a processor. The first converter is coupled to the first terminal and the second terminal for performing a conversion between a first alternating current and a first direct current. The second converter is coupled to the first converter for performing a conversion between a second alternating current and the first direct current. The power driver is coupled to the second converter, the third terminal and the fourth terminal for performing a conversion between the second alternating current and a second direct current. The processor is coupled to the first converter, the second converter, and the power driver for controlling the first converter, the second converter, and the power driver.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: November 21, 2017
    Assignee: COTEK ELECTRONIC IND. CO., LTD
    Inventors: Wei-Kuang Chen, Chun-Wei Wu
  • Patent number: 9825534
    Abstract: A power converter provides a dummy load to lower an output voltage under a light-load or no-load condition. The power converter has a primary winding and a secondary winding isolated from each other. The secondary winding can de-energize to provide the output voltage at an output node for powering a load. The winding voltage at across the secondary winding is sensed to provide a non-switching time, which is checked if it exceeds a predetermined reference time. The output voltage is compared with a predetermined voltage. A discharge current is provided as the dummy load to drain from the output node and to lower the output voltage if the on-switching time exceeds the predetermined reference time and the output voltage exceeds the predetermined voltage.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: November 21, 2017
    Assignee: LEADTREND TECHNOLOGY CORPORATION
    Inventors: Chao-Chih Lin, Ming Chang Tsou, Meng Jen Tsai
  • Patent number: 9819187
    Abstract: A power supply device for HVDC controller is provided. The power supply device comprises: a first High Voltage Direct Current (HVDC) converter unit connected to an active power grid; a second HVDC converter unit connected to a passive power grid, the second HVDC converter unit being capable of receiving first DC power from the first HVDC converter unit by being connected to the first HVDC converter unit via a Direct Current (DC) transmission line; and an HVDC controller, arranged in the second HVDC converter unit, for receiving the first DC power, applied from the first HVDC converter unit to the second HVDC converter unit, by being connected to the DC transmission line that connects the first HVDC converter unit with the second HVDC converter unit.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: November 14, 2017
    Assignee: HYOSUNG CORPORATION
    Inventors: Jung-Soo Park, Hong-Ju Jung, June-Sung Kim
  • Patent number: 9812941
    Abstract: A transistor circuit includes a transistor having a control electrode, a first current electrode, and a second current electrode. A turn off mode change circuit has a signal input that receives a series of pulses, an output coupled to the control electrode of the transistor, and a control input. The turn off mode change circuit has a fast turn off mode and a slow turn off mode. A turn off mode detection circuit is coupled between the first current electrode and the second current electrode. The turn off mode change circuit detects when a transition from the fast turn off mode to the slow turn off mode is desired and when a transition from the slow turn off mode to the fast transition mode may be performed.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: November 7, 2017
    Assignee: NXP USA, INC.
    Inventors: Thierry Michel Alain Sicard, Ibrahim Shihadeh Kandah, Philippe Jean Pierre Perruchoud
  • Patent number: 9812876
    Abstract: A wall socket includes a socket housing, an output terminal, a power converter circuit and a load detection circuit. The output terminal is arranged at a side of the socket housing and configured to output a DC output voltage. The power converter circuit is arranged in the socket housing and configured to convert an input voltage to the DC output voltage according to a control signal. The load detection circuit is configured to receive an identification signal outputted by an electronic device when the electronic device is connected to the output terminal, and output the control signal according to the identification signal to adjust a voltage level of the DC output voltage.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: November 7, 2017
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Kun-Chi Lin, Chung-Chieh Cheng, Chun-Chih Chen
  • Patent number: 9812958
    Abstract: A voltage regulator includes an error amplifier; an output transistor; and a first transistor including a gate for inputting a reference voltage and a source for inputting an output voltage. The first transistor is configured to cause a current to flow when the output voltage becomes an irregular voltage, and a current of the output transistor is controlled based on the current flowing through the first transistor. The voltage regulator capable of improving the overshoot or undershoot of the output voltage in a wide temperature range and to reduce a delay in detection of the overshoot or undershoot.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: November 7, 2017
    Assignee: SII SEMICONDUCTOR CORPORATION
    Inventor: Fumiyasu Utsunomiya