Patents Examined by David B Frederiksen
  • Patent number: 11199592
    Abstract: A robotic inspection system for corrosion detection within external post-tension bridge tendons includes a sensing device. The sensing device is configured to move along a bridge tendon to detect magnetic flux leakage of the bridge tendon as the sensing device moves along the bridge tendon. In addition, the system includes a location device coupled to the sensing device, where the location device is configured to determine the location of the sensing device on the bridge tendon. The system also includes a control station configured to wirelessly interface with the sensing device and the location instrument. The control station is also configured to generate a bridge tendon condition assessment report from the detection of magnetic flux leakage to identify locations and sizes of discontinuities of the bridge tendon.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: December 14, 2021
    Assignee: INFRASTRUCTURE PRESERVATION CORPORATION
    Inventor: William Seavey
  • Patent number: 11193794
    Abstract: A rotation angle sensor includes first and second magnetic detection elements disposed at positions where a first disposition angle relative to a magnet center is greater than 0 degrees and less than 90 degrees and configured to acquire magnetic field in a first direction varying by a rotation of a magnet; third and fourth magnetic detection elements configured to acquire the magnetic field in a second direction; a calculation signal generator configured to output a first magnetic field calculation signal, based on outputs of the first and second magnetic detection elements, and configured to output a second magnetic field calculation signal, based on outputs of the third and fourth magnetic detection elements; and an angle signal generator configured to generate and output an angle signal indicative of a rotation angle of the magnet, based on the first and second magnetic field calculation signal.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: December 7, 2021
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Kenta Sogo, Takeo Yamamoto
  • Patent number: 11181398
    Abstract: A rotation angle detection device for detecting a rotation angle of a rotating body includes a magnet disposed to rotate together with the rotating body, a magnetic portion provided in a ring shape radially outward of the magnet, a plurality of gaps being formed in the magnetic portion at a plurality of locations along a circumferential direction, and a magnetic detection unit arranged in a particular gap of the plurality of gaps. The magnetic detection unit is located at a detection position, a width of the particular gap in the tangential direction at the detection position is defined as a detection position gap width, a width of the particular gap in the tangential direction at a position radially outward of the detection position is defined as a tangential width, and the tangential width is narrower than the detection position gap width.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: November 23, 2021
    Assignee: DENSO CORPORATION
    Inventors: Yoshinori Inuzuka, Yoshiyuki Kono, Hidekazu Watanabe, Tomoyuki Takiguchi, Takasuke Ito
  • Patent number: 11163000
    Abstract: The present invention relates to a plate-shaped connection system for the connection of two test units, such as for example a testing device (tester) and a handling device (handler). The handling device serves for the feeding of semiconductor elements to the tester of a test system, for the testing of such semiconductor elements. The plate-shaped connection system comprises a master frame and an insert frame. The master frame is designed for connection with a first of the two test units and one or more docking elements are provided for releasable connection with the other second test unit. The insert frame is designed that it may be connected to the master frame. The insert frame extends inwards from an inner edge of the master frame, wherein the insert frame has mounting elements for the mounting of a test board.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: November 2, 2021
    Assignee: Turbodynamics GmbH
    Inventor: Stefan Thurmaier
  • Patent number: 11156477
    Abstract: A rotation angle measurement method and a circuit, a rotation angle measuring system including a shaft, a transducer, a first sensor system with at least one magnetic field sensor of a first type for measuring a magnetic field component Bz and a second sensor system with at least one magnetic field sensor of a second type for detecting magnetic field components Bx, By being provided, a first or second measured value being ascertained with the aid of each sensor system at a first point in time, a first or second rotation angle value being determined for each measured value, a first output rotation angle value being determined from the first rotation angle value and a known constant angle offset between the two sensor systems as a reference value for the second sensor system, a deviation of the second rotation angle value from the first output rotation angle value being ascertained.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: October 26, 2021
    Assignee: TDK-Micronas GmbH
    Inventors: Marcus Christian Meyer, Hans Christian Paul Dittmann
  • Patent number: 11143697
    Abstract: A system for performing tests using automated test equipment (ATE) is disclosed. The system comprises a robot comprising an end effector operable to pick up and transfer a DUT in-and-out of a test slot in a primitive. The system further comprises a system controller comprising a memory and a processor for controlling the robot. Also, the system comprises a test rack comprising a plurality of primitives, wherein the primitive is a modular device comprising a plurality of slots for testing a plurality of DUTs, and wherein the robot is configured to access slots in the plurality of primitives within the test rack using the end effector.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: October 12, 2021
    Assignee: ADVANTEST CORPORATION
    Inventor: Roland Wolff
  • Patent number: 11137431
    Abstract: Apparatuses for studying possible physical effects of dark matter may include an electronic oscillator. A power source may be in electrical communication with the electronic oscillator. An antenna may be in series electrical communication with the electronic oscillator. A first diode may be in series electrical communication with the electronic oscillator and the antenna. A second diode may be in series electrical communication with the electronic oscillator and the antenna. The first diode and the second diode may ensure and restrict flow of electrical current in one direction only in the antenna. Methods for studying possible physical effects of dark matter are also disclosed.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: October 5, 2021
    Inventor: Jeffery T. Semmes
  • Patent number: 11105848
    Abstract: A probe card includes a circuit board having a through opening therein. A fixing member is at least partially in the through opening of the circuit board and has a through opening therein. The through opening of the fixing member is defined at least partially by opposite first and second sidewalls of the fixing member. A plurality of probes each includes an arm portion and a tip portion. One end of the arm portion is connected to the circuit board. The arm portion extends through the first sidewall of the fixing member into the through opening of the fixing member. The arm portion is angled with respect to a direction perpendicular to the first sidewall of the fixing member when viewed from above. The tip portion extends from the arm portion. The second sidewall of the fixing member is free of probes.
    Type: Grant
    Filed: May 31, 2020
    Date of Patent: August 31, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yuan-Chun Wu, Chang-Chun Xu, Ni Shen
  • Patent number: 11108392
    Abstract: Some embodiments of the present invention provide a proximity sensor (300) comprising: at least a first sensor portion, a second sensor portion and a third sensor portion, the second sensor portion being provided between the first and third sensor portions, the first and third sensor portions each comprising at least a portion of a or a respective substrate (310) having first and second opposite major faces, the first and third sensor portions each bearing on a major face of the or the respective substrate at least a portion of a substantially planar transmit electrode (320), and a substantially planar receive electrode (330A, 330B) arranged to receive a signal transmitted by the respective at least a portion of a transmit electrode, the second sensor portion comprising a first region (315), the sensor comprising a ground shield portion (340) comprising one or more substantially planar, elongate electrodes, the ground shield portion having at least one elongate portion laterally disposed between the receive e
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: August 31, 2021
    Assignee: JAGUAR LAND ROVER LIMITED
    Inventor: Richard Powell
  • Patent number: 11099168
    Abstract: Methods and apparatus for detecting water in multiphase flows are disclosed. An example apparatus includes a conduit including an inlet to receive a multiphase flow and an electromagnetic sensor coupled to a liquid-rich region of the conduit to measure a permittivity of the multiphase flow, and a water detection manager to determine that water is detected in the multiphase flow based on the permittivity.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: August 24, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Cheng-Gang Xie, Massimiliano Fiore
  • Patent number: 11099155
    Abstract: Disclosed are various embodiments related to a corrosion detection device for detecting corrosive environments. A corrosion detection device comprises a magnetic sensor and at least one magnetic nanowire disposed on the magnetic sensor. The magnetic sensor is configured to detect corrosion of the one or more magnetic nanowires based at least in part on a magnetic field of the one or more magnetic nanowires.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: August 24, 2021
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Jürgen Kosel, Selma Amara, Iurii Ivanov, Mario Blanco
  • Patent number: 11097272
    Abstract: According to an example, a microfluidic apparatus may include a fluid slot and a foyer that is in fluid communication with the fluid slot via a channel having a relatively smaller width than the foyer. The microfluidic apparatus may also include an electrical sensor to measure a change in an electrical field caused by a particle of interest in a fluid passing through the channel from the fluid slot to the foyer, an actuator to apply pressure onto fluid contained in the foyer, and a controller to receive the measured change in the electrical field from the electrical sensor, determine, from the received change in the electrical field, an electrical signature of the particle of interest, and control the actuator to control movement of the particle of interest based upon the determined electrical signature of the particle of interest.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: August 24, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Chantelle Domingue, Tod Woodford, Manish Giri, Matthew David Smith, George H Corrigan, III, Masoud Zavarehi, Joshua M. Yu
  • Patent number: 11091038
    Abstract: A method and device for determining insulation resistances in a motor vehicle. The device includes a control device which, in at least two measuring intervals, controls a respective operating state of at least one power converter of the motor vehicle, which is conductively connected to the traction energy store. The device further comprises a measuring device having a measuring terminal, which is conductively connected or connectable to least one DC voltage pole of an electric traction energy store of the motor vehicle, and a ground terminal which is conductively connected or connectable to a reference potential of the motor vehicle. The measuring device, in the at least two measuring intervals, respectively measures a conductance between the measuring terminal and the ground terminal. The device further comprises a calculation device, which determines the insulation resistances as a function of the at least two measured conductances and the operating states controlled.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: August 17, 2021
    Assignee: MAN TRUCK & BUS AG
    Inventors: Alexander Moertl, Markus Hubert, Stefan Soboll
  • Patent number: 11092656
    Abstract: A circuit and method for magnetic field detection is disclosed. A fluxgate sensor comprises a fluxgate having a first core and a second core. A sense coil has a first winding around the first fluxgate core and a second winding around the second fluxgate core. A fluxgate detection circuit is coupled to the sense coil and outputs a signal proportional to an external magnetic field applied to the fluxgate. A detection circuit is coupled to the first winding and outputs a signal that indicates whether voltage pulses have been detected on the first winding.
    Type: Grant
    Filed: December 19, 2015
    Date of Patent: August 17, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Martijn F. Snoeij, Viola Schäffer
  • Patent number: 11086346
    Abstract: Interconnection meter socket adapters are provided. An interconnection meter socket adapter comprises a housing enclosing a set of electrical connections. The interconnection meter socket adapter may be configured to be coupled to a standard distribution panel and a standard electric meter, thereby establishing connections between a distribution panel and a user such that electrical power may be delivered to the user while an electrical meter measures the power consumption of the user. A power regulation module is disposed between the interconnection meter socket adapter, and configured to selectively connect one or more energy sources or energy sinks.
    Type: Grant
    Filed: January 6, 2018
    Date of Patent: August 10, 2021
    Assignee: San Diego Gas & Electric Company
    Inventors: Ken Parks, Michael Colburn
  • Patent number: 11073937
    Abstract: A capacitive interface device, includes a detection surface with one or more first capacitive electrodes extending in a first direction (X), second capacitive electrodes extending in a second direction (Y), third capacitive electrodes arranged in a matrix between the second capacitive electrodes and facing the one or more first capacitive electrodes, and linking tracks electrically connected within the detection surface to a plurality of adjacent third capacitive electrodes.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: July 27, 2021
    Assignee: FOGALE NANOTECH
    Inventor: Eric Legros
  • Patent number: 11070095
    Abstract: The present invention relates to a method for detecting a foreign material, and a device and system therefor.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: July 20, 2021
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Jae Hee Park, Yong II Kwon
  • Patent number: 11060992
    Abstract: A probe system includes a heater and a control circuit. The heater includes a resistive heating element routed through the probe. An operational voltage is provided to the resistive heating element to provide heating for the probe. The control circuit is configured to provide a test voltage different than the operational voltage and monitor a test current generated in the resistive heating element while providing the test voltage. The control circuit is further configured to detect micro fractures in the resistive heating element based on the test current.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: July 13, 2021
    Assignee: Rosemount Aerospace Inc.
    Inventors: Ben Ping-Tao Fok, Thomas Wingert
  • Patent number: 11061059
    Abstract: The present invention relates in general to a novel microelectromechanical sensor device for detecting and measuring electric field and magnetic field. In particular, the sensor device of the present invention is useful for measuring low and high strength electric fields and magnetic fields without reference ground connection, the device comprising a first electrode and a second electrode rigidly connected together via a joining segment so that the first electrode and second electrode are mutually and dependently pivotal about an axis passing through a joining segment to form a tiltable unit, and the first electrode and the second electrode are electrically isolated from each other. The present invention further provides novel methods of using through specific arrangement of such novel sensor device.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: July 13, 2021
    Inventors: Cyrus Shafai, Janaranjana Sampath Hiniduma Liyanage
  • Patent number: 11054318
    Abstract: A system may include a first injection electrode, a second injection electrode, a first sensing coil, and a second sensing coil. The first injection electrode and the second electrode may each be configured to contact a material and conduct an alternating current through a portion of the material. The first sensing coil and a second sensing coil may each be configured to inductively sense a Hall current created by the alternating current and a magnetic field perpendicular to the alternating current. The first sensing coil and the second sensing coil may be coupled in series.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: July 6, 2021
    Assignees: Rolls-Royce Corporation, University of Cincinnati
    Inventors: Waled T. Hassan, Peter B. Nagy