Patents Examined by David D. Le
  • Patent number: 9031753
    Abstract: A control apparatus for an automatic transmission that selectively engages a plurality of frictional engaging elements for shift control includes a shift instruction device, a temperature calculator, an engageability determiner, an engagement delay device, a load calculator, a cumulative load calculator, and a threshold temperature changer. The engageability determiner is configured to determine whether at least one of the plurality of frictional engaging elements is engageable or not based on a comparison between a temperature of the at least one of the plurality of frictional engaging elements calculated by the temperature calculator and a predetermined threshold temperature in a case where the shift instruction device outputs a shift instruction. The threshold temperature changer is configured to change the predetermined threshold temperature in a case where a cumulative load calculated by the cumulative load calculator reaches a value greater than or equal to a predetermined value.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: May 12, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventor: Takashi Satoyoshi
  • Patent number: 9031751
    Abstract: In a control apparatus for an automatic transmission, a gear shift from a second gear shift stage to a first gear shift stage is inhibited and the gear shift from the first gear shift stage to the second gear shift stage is continued, when, during the gear shift from the first gear shift stage to the second gear shift stage, a request of the gear shift from the second gear shift stage to the first gear shift stage by means of an automatic transmission section has occurred during a time duration from a time at which a gear shift command from the first gear shift stage to the second gear shift stage is issued to a time at which an inertia phase is started.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: May 12, 2015
    Assignees: JATCO Ltd, Nissan Motor Co., Ltd.
    Inventors: Go Endo, Kunihiro Takahashi
  • Patent number: 9031752
    Abstract: A device for controlling an automatic transmission including a lock-up clutch control portion and a zero slip control portion for bringing a lock-up clutch into a zero slip state immediately before slippage occurs in accordance with a zero slip request outputted during a non-gear shift, wherein in a case where a target slip amount is equal to or smaller than a slip amount threshold value upon transition to the zero slip state, the zero slip control portion fixes the target slip amount to the slip amount threshold value and retains the fixed target slip amount for a predetermined period of time, and after the predetermined period of time has elapsed, gradually decreases the target slip amount from the slip amount threshold value to a zero slip amount with a predetermined gradient with time.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: May 12, 2015
    Assignee: JATCO Ltd
    Inventors: Morimasa Yamawaki, Tatsuya Hayashi
  • Patent number: 9026328
    Abstract: A transmission controller increases an indicated hydraulic pressure to a starting frictional engagement element to a normal hydraulic pressure, causes a hydraulic piston to stroke and executes a learning control of the indicated hydraulic pressure so that a time until the starting frictional engagement element starts generating a transmission capacity after the range is switched from the neutral range to the drive range becomes a target time when a range is switched from a neutral range to a drive range. The transmission controller further detects a driver's starting intention and increases the indicated hydraulic pressure to the starting frictional engagement element to a starting time hydraulic pressure higher than the normal hydraulic pressure and prohibits the learning control if the starting intention is detected before the starting frictional engagement element starts generating the transmission capacity.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: May 5, 2015
    Assignee: Jatco Ltd
    Inventor: Hiromichi Akebono
  • Patent number: 9026323
    Abstract: A method of controlling a start-stop vehicle transmission pump, includes: assessing how long an engine has been turned off; and when the engine has been turned off for longer than a predetermined threshold and the vehicle is on, priming the transmission pump.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: May 5, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Daniel T. Lin, Eric F. Banners, Stephen M. Cicala, Tim J. Kropf, Bradley D. Riedle
  • Patent number: 9004254
    Abstract: A parking brake system that uses a locking device to maintain a parking release condition may include a control lever that may be rotatably connected to the exterior of a transmission, a shift cable that may be rotatably connected to an end of the control lever, the locking device that may be connected to the other end of the shift cable and selectively maintains the parking release condition, and a parking device that includes a piston member in a cylinder and that may be connected to the end of the control lever and uses hydraulic pressure to move the control lever and the shift cable such that the parking release condition may be maintained.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: April 14, 2015
    Assignee: Hyundai Motor Company
    Inventors: Sung Wook Jang, Tae Whan Kim, Da Hui Kim
  • Patent number: 9002602
    Abstract: A method of determining a current operating range of a transfer case includes continuously calculating current Combined Drive Ratio (CDR), and categorizing the current CDR into one of a pre-determined number of expected CDRs. Counters are used to track when the current CDR is identified as an expected CDR. The different counters are then analyzed using simple mathematical operations to identify which gear ratio the transfer case is currently operating in.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: April 7, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Peter John Giles, Michael A. Turley
  • Patent number: 8996262
    Abstract: Method and system providing manual skip-shift for operating the automatic transmission of a vehicle. The method includes accepting the input of gear states by operating a selector mechanism to select a value. The system accepts input of a selected sequence of gear states from a plurality of available gear states, the selected sequence including fewer gear states than the number of available gear states. The system then operates a selector mechanism to select the gear state from the selected sequence. The system also includes an electronic control module, a selector mechanism, and a power train control module.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: March 31, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Yuji Fujii, Davor Hrovat, Gregory Michael Pietron, Jeffrey Allen Doering, Alex O'Connor Gibson, Nimrod Kapas, Joseph F Kucharski, Diana Yanakiev, James Dottavio
  • Patent number: 8989977
    Abstract: A hill rollback control system and method for controlling a rollback speed of a motor vehicle with wheel brakes. Upon ascertaining that the vehicle is rolling back, the system and method determine, based on a grade angle of the terrain that the vehicle is traveling on and a temperature of a transmission, a target rollback speed for the vehicle. The target rollback speed is lower when the grade of the terrain is above a threshold value. Also, the target rollback speed is lower when the temperature of the transmission is above a threshold value. The actual rollback speed of the vehicle is set and maintained at the target rollback speed by applying the vehicle's wheel brakes.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: March 24, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Qingyuan Li, George Thomas, Ravikumar Bhadange
  • Patent number: 8983743
    Abstract: A variable control apparatus and method determines a short-term driving tendency. The apparatus may include a driving information collecting unit configured to collect driving information for determining a driving tendency, a first short-term driving tendency calculating module configured to calculate a first short-term driving tendency index using a fuzzy control theory based on an inputted opening degree of an accelerator pedal position sensor (APS), a second short-term driving tendency calculating module configured to calculate a second short-term driving tendency index using the fuzzy control theory based on an inputted forward vehicle relative speed, and a control module configured to calculate a final short-term driving tendency index by differentially applying weight values of the first short-term driving tendency index and the second short-term driving tendency index for each vehicle speed.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: March 17, 2015
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Byeong Wook Jeon, Dong Hoon Jeong
  • Patent number: 8979696
    Abstract: A high-pressure homogenizer including: a fixed body (7) housing a rotating crankshaft (10); a motor (3) for driving the crankshaft (10); a reduction gear unit (4) interconnected between the crankshaft and transmission elements (5, 6), characterized in that the reduction gear unit (4) is an epicyclic reduction gear unit. Preferably there is provided a lubricant feed line (15) which passes through the fixed body and reaches the epicyclic reduction gear unit (4). Preferably the epicyclic reduction gear unit (4) is constructed integrally with the fixed body (4).
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: March 17, 2015
    Assignee: Gea Mechnical Equipment Italia S.p.A.
    Inventors: Luca Salvarani, Massimiliano Benassi, Michele Madureri
  • Patent number: 8983744
    Abstract: An automatic shift apparatus includes a rotation shaft, a dog clutch gear shift mechanism, and a control unit. The control unit controls first moving speed to be faster than second moving speed on moving a sleeve in an engaged state engaged with one of a first clutch ring and a second clutch ring to a neutral position defined at a position between the first clutch ring and the second clutch ring where the first moving speed is a speed of moving the sleeve in the engaged state to a target position defined between the neutral position and the mentioned one of the first clutch ring and the second clutch ring the sleeve is engaged with and where the second moving speed is a speed of moving the sleeve from the target position to the neutral position.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: March 17, 2015
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Masahiko Komura, Yuuki Ohta, Kyosuke Mori
  • Patent number: 8978854
    Abstract: A rotational coupling device is provided with an integrated rotor and brake disc to simplify design of the device and remove liquids from the device when used in a wet environment. The rotor is configured for rotation about a rotating hub and includes a first member defining one pole of the rotor and a second member defining a second pole of the rotor and a braking surface. The second member is coupled to the first member, but axially movable relative to the first member. During clutch engagement, an electromagnetic circuit used to engage the clutch urges the second member into engagement with the first member for rotation. When the clutch is disengaged, the second member disengages from the first member to create a fluid flow path between the members and engages a brake plate to halt rotation of the rotor.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: March 17, 2015
    Assignee: Warner Electric Technology LLC
    Inventors: James A. Pardee, George P. Gill
  • Patent number: 8983746
    Abstract: A method of modeling initial temperatures of a dry DCT includes reactivating a controller after a time lapse between first and second clock times representing an offline period. The last known temperatures of a first component and a second component are read and a first temperature difference therebetween is calculated. The method calculates a stop time and a start time on a predefined exponential function from the calculated temperature difference. A first conductive heat transfer between the first and second components is calculated by integrating the predefined exponential function between the stop time and the start time. Based upon the calculated first conductive heat transfer, a first conductive temperature change between the first and second components is calculated. A starting temperature of the first component is calculated from first conductive temperature change, and a control action on the dry DCT is executed based upon the calculated starting temperature.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: March 17, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Xingyong Song, Kumaraswamy V. Hebbale, Farzad Samie
  • Patent number: 8977454
    Abstract: A system and method are provided for grade-based anti-hunt shift control of an automatic transmission powering a machine. A shift controller determines a recommended gear in which to operate the transmission and sets an anti-hunt timer upon recommending a shift from a first gear to a second gear. The anti-hunt timer prevents a subsequent shift back to the first gear while the anti-hunt timer is running. A grade-based controller is configured to track machine operation and to determine when the machine operational factors change such that an estimated steady state gear differs from the second gear. When such a change is encountered, the grade-based controller clears the anti-hunt timer and sets a secondary timer. The clearing of the anti-hunt timer allows a downshift to accommodate the detected grade while the setting of the secondary timer prevents a subsequent clearing of the anti-hunt timer while the secondary timer is running.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: March 10, 2015
    Assignee: Caterpillar Inc.
    Inventors: Scott A. Tipton, James W. Landes, Justin L. Steinlage
  • Patent number: 8977447
    Abstract: When estimating a torque ratio, which is the ratio of an actually transmitted torque relative to the maximum transmittable torque of a continuously variable transmission, based on the transmission characteristics for transmitting a given variable component of an input shaft element to an output shaft element via a frictional element, since the torque ratio is estimated from a slip identifier, an indicator for difference in amplitude of a variable component between the two elements, or a phase lag, an indicator for difference in phase of the variable component between the two elements, it is possible to estimate the torque ratio, which is closely related to the power transmission efficiency of the continuously variable transmission, with good precision, thus improving the power transmission efficiency. Moreover, since the torque ratio is estimated from the slip identifier or the phase lag, it is possible to minimize the number of sensors necessary for estimation.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: March 10, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventor: Kyohei Sakagami
  • Patent number: 8974339
    Abstract: A vehicle power transmission device has a torque converter including an input-side rotating member, an output-side rotating member, a stator and a case including a first chamber and a second chamber separated by a bulkhead, and the first chamber and the second chamber being oil-tightly isolated from each other by an oil seal. The vehicle power transmission device is disposed with a thrust bearing between the input-side rotating member and the stator, which is disposed to partially or entirely overlap with the oil seal and a one way clutch disposed between the stator and a non-rotating member which supports the stator. A portion of the one way clutch protrudes toward the second chamber, the input-side rotating member having an annular projecting portion, and the annular projecting portion houses the thrust bearing and the portion of the one way clutch.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: March 10, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukihiko Ideshio, Terufumi Miyazaki, Toshihiko Kamiya, Shingo Eto, Hironori Asaoka, Yasuyuki Kato
  • Patent number: 8977457
    Abstract: A vehicle powertrain includes an engine, transmission, torque converter assembly, and controller. The controller includes recorded lumped inertia models of the powertrain and instructions for executing a clutch-to-clutch shift using these models. The models collectively reduce powertrain dynamics to two or three degrees of freedom. The controller executes a method to estimate clutch torques using the models. The models may include a first primary inertia block describing engine inertia and inertia of a torque converter pump, and a second primary inertia model describing the inertia of the turbine and transmission as reflected to the input member. The second primary inertia model includes bulk inertia models for each fixed gear state and each possible shift maneuver. The controller derives a required output torque value as a closed-loop target value using the lumped inertia models and a requested input torque, and uses the estimated clutch torque to achieve the target value.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: March 10, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Darrell Lee Robinette, Daniel N. Wehrwein, Jeremy V. Horgan
  • Patent number: 8977455
    Abstract: A power transmission apparatus includes a drive shaft, a driven shaft, a first transmission device, a first one-way power transmission mechanism, a second transmission device, a second one-way power transmission mechanism, and a controller. The first transmission device is to change power of the drive shaft. The first one-way power transmission mechanism is to transmit power changed by the first transmission device only in one direction to the driven shaft. The second transmission device is to change power of the driven shaft. The second one-way power transmission mechanism is to transmit power changed by the second transmission device only in one direction to the drive shaft. The controller is configured to change ratios of the first transmission device and the second transmission device. The controller is configured to make the ratio of the first transmission device larger than the ratio of the second transmission device.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: March 10, 2015
    Assignee: Honda Motor Co. Ltd.
    Inventors: Satoshi Kodo, Tsunehiro Kobayashi, Mitsuhiro Iwadare
  • Patent number: 8972132
    Abstract: A method of controlling a transmission includes detecting an occurrence of a downshift in the transmission from a first gear ratio to a second gear ratio. A determination is made whether the vehicle is operating within a freeway speed range, and whether an accelerator pedal is depressed at least a minimum percentage of a fully depressed position. When the downshift from the high gear ratio to the low gear ratio is detected, the vehicle is operating within the freeway speed range, and the accelerator pedal is depressed at least the minimum percentage of the fully depressed position, a countdown timer is started to count down from a pre-defined time to zero. An upshift of the transmission from the second gear ratio to the first gear ratio is restricted while the countdown timer defines a time that is greater than zero.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: March 3, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Eric Piper, Alexander K. Rustoni, John Janczak, Samantha Victoria Lado