Patents Examined by David Kaufman
  • Patent number: 8673166
    Abstract: In a plasma processing apparatus, thrust-up pins are elevated and a thrust-up force is detected when electrostatic attraction for a substrate by a substrate holding device is ceased after completion of plasma processing, the elevation of the thrust-up pins is ceased upon detection of a detection threshold, and a stepped elevating operation in which the elevation and stoppage of the thrust-up pins are repeated a plurality of times are thereafter commenced on condition that the detected thrust-up force falls to or below the detection threshold and that release of the substrate from a placement surface has not been completed. In the stepped elevating operation, operation timing of the thrust-up device is controlled so that the completion of the release of the substrate from the placement surface is detected when the thrust-up pins are stopped after being elevated and so that the stepped elevating operation is continued on condition that the release has not been completed.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: March 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Shogo Okita, Hiromi Asakura, Syouzou Watanabe, Toshihiro Wada, Mitsuhiro Okune, Mitsuru Hiroshima
  • Patent number: 8663487
    Abstract: The invention is directed to the provision of a method for manufacturing a crystal oscillator manufacturing method that can achieve a highly precise fine adjustment without applying unnecessary external force to a crystal oscillator, and that can adjust a plurality of crystal oscillators in a collective manner. More specifically, the invention provides a method for manufacturing a crystal oscillator includes a first etching step for forming a prescribed external shape, an electrode forming step for forming an electrode at least in a portion of a surface of the external shape, a leakage amount measuring step for measuring leakage amount associated with leakage vibration of the external shape, and a second etching step for etching the external shape by an amount that is determined based on a measurement result of the leakage amount measuring step so as to adjust balance.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: March 4, 2014
    Assignee: Citizen Holdings Co., Ltd.
    Inventors: Akiko Katoh, Tohru Yanagisawa
  • Patent number: 8652345
    Abstract: A method of forming a patterned substrate is provided. The method includes providing a substrate (300) having a structured surface region comprising one or more recessed features (310). The method includes disposing a first liquid (325) onto at least a portion of the structured surface region. The method includes contacting the first liquid with a second liquid (330). The method includes displacing the first liquid with the second liquid from at least a portion (315) of the structured surface region. The first liquid is selectively located in at least a portion of the one or more recessed features.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: February 18, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Cristin E. Moran, Matthew H. Frey, Matthew S. Stay, Mikhail L. Pekurovsky
  • Patent number: 8647986
    Abstract: A semiconductor process includes the following steps. A first gate structure and a second gate structure are formed on a substrate, wherein the top of the first gate structure includes a cap layer, so that the vertical height of the first gate structure is higher than the vertical height of the second gate structure. An interdielectric layer is formed on the substrate. A first chemical mechanical polishing process is performed to expose the top surface of the cap layer. A second chemical mechanical polishing process is performed to expose the top surface of the second gate structure or an etching process is performed to remove the interdielectric layer located on the second gate structure. A second chemical mechanical polishing process is then performed to remove the cap layer.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: February 11, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Po-Cheng Huang, Teng-Chun Tsai, Chia-Lin Hsu, Chun-Wei Hsu, Yen-Ming Chen, Chih-Hsun Lin, Chang-Hung Kung
  • Patent number: 8623765
    Abstract: A processed object processing apparatus which enables a plurality of processes to be carried out efficiently. A plurality of treatment systems are communicably connected together in a line and in which the objects to be processed are processed. A load lock system is communicably connected to the treatment systems and has a transfer mechanism that transfers the objects to be processed into and out of each of the treatment systems. At least one of the treatment systems is a vacuum treatment system, and the load lock system is disposed in a position such as to form a line with the treatment systems.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: January 7, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Jun Ozawa, Gaku Takahashi
  • Patent number: 8598040
    Abstract: A method for etching features in a plurality of silicon based bilayers forming a stack on a wafer in a plasma processing chamber is provided. A main etch gas is flowed into the plasma processing chamber. The main etch gas is formed into a plasma, while providing a first pressure. A wafer temperature of less than 20° C. is maintained. The pressure is ramped to a second pressure less than the first pressure as the plasma etches through a plurality of the plurality of silicon based bilayers. The flow of the main etch gas is stopped after a first plurality of the plurality of bilayers is etched.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: December 3, 2013
    Assignee: Lam Research Corporation
    Inventors: Anne Le Gouil, Jeffrey R. Lindain, Yasushi Ishikawa, Yoko Yamaguchi-Adams
  • Patent number: 8585910
    Abstract: A process for producing a micromachined tube (microtube) suitable for microfluidic devices. The process entails isotropically etching a surface of a first substrate to define therein a channel having an arcuate cross-sectional profile, and forming a substrate structure by bonding the first substrate to a second substrate so that the second substrate overlies and encloses the channel to define a passage having a cross-sectional profile of which at least half is arcuate. The substrate structure can optionally then be thinned to define a microtube and walls thereof that surround the passage.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: November 19, 2013
    Assignee: Integrated Sensing Systems Inc.
    Inventors: Douglas Ray Sparks, Nader Najafi
  • Patent number: 8568600
    Abstract: A method of manufacturing touch screen panels includes forming a photoresist film on a first surface of a substrate having high transmittance, removing the photoresist film in regions between unit cells by utilizing exposing and developing processes, etching the substrate in the regions where the photoresist film has been removed, removing the photoresist film from the substrate after the etching, performing a tempering process on the substrate including the etched regions, forming touch screen panels at the unit cells defined by the etched regions on the first surface of the substrate, and cutting the substrate at the etched regions to separate the touch screen panels.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: October 29, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sung-Ku Kang, Jung-Mok Park
  • Patent number: 8569175
    Abstract: The invention relates to a method for dry chemical treatment of substrates selected from the group comprising silicon, ceramic, glass, and quartz glass, in which the substrate is treated in a heated reaction chamber with a gas which contains hydrogen chloride as etching agent, and also to a substrate which can be produced in this way. The invention likewise relates to uses of the previously mentioned method.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: October 29, 2013
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Stefan Reber, Gerhard Willeke
  • Patent number: 8562855
    Abstract: In etching processing of silicon, in particular anisotropic etching processing of silicon in a manufacturing step of MEMS parts, an etching liquid having a long life of etching liquid and an etching method are provided by suppressing a lowering of an etching rate at the time of warming which is characteristic of a hydroxylamine-containing etching liquid. A silicon etching liquid which is an alkaline aqueous solution containing an alkali metal hydroxide, hydroxylamine and an inorganic carbonate compound and having a pH of 12 or more and which is able to anisotropically dissolve monocrystalline silicon therein, and an etching method of silicon using this etching liquid are provided.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: October 22, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazuyoshi Yaguchi, Ryuji Sotoaka
  • Patent number: 8551886
    Abstract: A method for semiconductor processing is provided wherein a workpiece having an underlying body and a plurality of features extending therefrom, is provided. A first set of the plurality of features extend from the underlying body to a first plane, and a second set of the plurality features extend from the underlying body to a second plane. A protection layer overlies each of the plurality of features and an isolation layer overlies the underlying body and protection layer, wherein the isolation has a non-uniform first oxide density associated therewith. The isolation layer anisotropically etched based on a predetermined pattern, and then isotropically etched, wherein a second oxide density of the isolation layer is substantially uniform across the workpiece. The predetermined pattern is based, at least in part, on a desired oxide density, a location and extension of the plurality of features to the first and second planes.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: October 8, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Kyle P. Hunt, Leila Elvira Noriega, Billy Alan Wofford, Asadd M. Hosein, Binghua Hu, Xinfen Chen
  • Patent number: 8546265
    Abstract: A method for manufacturing a silicon structure according to the present invention includes, in a so-called dry-etching process wherein gas-switching is employed, the steps of: etching a portion in the silicon region at a highest etching rate under a high-rate etching condition such that the portion does not reach the etch stop layer; subsequently etching under a transition etching condition in which an etching rate is decreased with time from the highest etching rate in the high-rate etching condition; and thereafter, etching the silicon region under a low-rate etching condition of a lowest etching rate in the transition etching condition.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: October 1, 2013
    Assignee: SPP Technologies Co., Ltd.
    Inventors: Yoshiyuki Nozawa, Takashi Yamamoto
  • Patent number: 8540894
    Abstract: A polishing composition that can improve polishing property without foaming is provided. A polishing composition includes a pH regulator, a water-soluble polymer compound, and a compound containing an alkylene diamine structure having two nitrogens represented by the following general formula (1), and having at least one block type polyether bonded to the two nitrogens of the alkylene structure, the block type polyether having a bond of an oxyethylene group and an oxypropylene group: where R represents an alkylene group represented by CnH2n, in which n is an integer of 1 or more.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: September 24, 2013
    Assignee: Nitta Haas Incorporated
    Inventors: Takayuki Matsushita, Masashi Teramoto, Haruki Nojo
  • Patent number: 8541313
    Abstract: A method of etching a sacrificial layer for a micro-machined structure, the sacrificial layer positioned between a layer of a first material and a layer of a second material, the etching being carried out by an etching agent. The method includes: providing at least one species having an affinity for the etching agent greater than that of the layers of first material and second material and less than or equal to that of the sacrificial layer; and then etching the sacrificial layer by the etching agent, the etching being carried out to eliminate at least partially the sacrificial layer and then to eliminate at least partially the species.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: September 24, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Stéphan Borel, Jeremy Bilde
  • Patent number: 8518280
    Abstract: An exemplary brittle non-metallic workpiece (80) defines a through hole (82). An inner surface (822) for forming the through hole has no microcracks and burrs. A method for making a through hole in a brittle non-metallic substrate (50) is also provided. The method includes as follows: forming an enclosing sketched etch (66) engraved into a brittle non-metallic substrate with a given depth (H) from a surface of the brittle non-metallic substrate; placing a cooling object (74) on an excess portion (68) inside the enclosing sketched etch (66); and extending the enclosing sketched etch through the brittle non-metallic substrate.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: August 27, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Mu-Chi Hsu, Vladimir Stepanovich Kondratenko
  • Patent number: 8518277
    Abstract: A method of removing portions of a conductive layer comprising a transparent conductive material and/or a metallic material disposed on a plastic substrate used for capacitive touchscreen devices includes providing a plastic substrate having a conductive layer disposed on a surface thereof and removing portions of the conductive layer at the surface of the plastic substrate to establish a pattern of electrically isolated conductive portions on the surface of the plastic substrate. The conductive portions or traces are electrically connected to a touchscreen controller, which is operable to determine a location of a touch or proximity of an object at or near the surface of the plastic substrate responsive to a detected change in capacitance. The removal process may comprise etching or laser ablating portions of the conductive layer at the surface of the plastic substrate.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: August 27, 2013
    Assignee: TPK Touch Solutions Inc.
    Inventors: Yang Yun, Ryan T. Gerlach
  • Patent number: 8512586
    Abstract: A method and system for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the GCIB etch processing includes setting one or more GCIB properties of a GCIB process condition for the GCIB to achieve one or more target etch process metrics.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: August 20, 2013
    Assignee: TEL Epion Inc.
    Inventors: Martin D. Tabat, Christopher K. Olsen, Yan Shao, Ruairidh MacCrimmon
  • Patent number: 8506833
    Abstract: A method for producing a molded body, said method comprising: providing a film comprising a thermoplastic plastic and having a film thickness D ranging from 1 ?m to 1000 ?m; irradiating the film with ionizing radiation, to produce irradiated regions in the film; thermally reshaping the film into a molded body and generating at least one hollow structure, wherein a temperature of the thermal reshaping remains below the melting temperature for the thermoplastic plastic; removing the irradiated regions, to create pores having a diameter ? from about 10 nm to about 10 ?m in the molded body; and removing the molded body from a mold.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: August 13, 2013
    Assignee: Karlsruhe Institute of Technology
    Inventors: Stefan Giselbrecht, Roman Truckenmüller, Christina Trautmann
  • Patent number: 8492276
    Abstract: A chemical mechanical polishing aqueous dispersion is used to polish a polishing target that includes an interconnect layer that contains tungsten. The chemical mechanical polishing aqueous dispersion includes: (A) a cationic water-soluble polymer; (B) an iron (III) compound; and (C) colloidal silica particles. The content (MA) (mass %) of the cationic water-soluble polymer (A) and the content (MB) (mass %) of the iron (III) compound (B) satisfy the relationship “MA/MB=0.004 to 0.1”. The chemical mechanical polishing aqueous dispersion has a pH of 1 to 3.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: July 23, 2013
    Assignees: JSR Corporation, Kabushiki Kaisha Toshiba
    Inventors: Taichi Abe, Hirotaka Shida, Akihiro Takemura, Mitsuru Meno, Shinichi Hirasawa, Kenji Iwade, Takeshi Nishioka
  • Patent number: 8486280
    Abstract: The present invention provides a method of forming a nanostructured surface (NSS) on a polymer electrolyte membrane (PEM) of a membrane electrode assembly (MEA) for a fuel cell, in which a nanostructured surface is suitably formed on a polymer electrolyte membrane by plasma treatment during plasma assisted etching in a plasma-assisted chemical vapor deposition (PACVD) chamber, where catalyst particles or a catalyst layer are directly deposited on the surface of the polymer electrolyte membrane having the nanostructured surface.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: July 16, 2013
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Korea Institute of Science and Technology
    Inventors: Kwang Ryeol Lee, Myoung Woon Moon, Sae Hoon Kim, Byung Ki Ahn