Patents Examined by David M. Shay
  • Patent number: 6251103
    Abstract: Transocular and periocular laser delivery system for treatment of eye diseases wherein a fiberoptic element is passed through a perforation made either by paracentesis of eyeball encapsulating tissue (i.e.—cornea, sclera) or by the fiberoptic element itself so that the fiber actually penetrates into a chamber therein. The penetrating fiber end is then juxtaposed to the tissue to be treated while the external fiberoptic end is coupled either to an excimer laser emitting ultraviolet radiation (in the range of 193 to 351 nanometers) or to certain lasers emitting infrared radiation, the radiated pulses therefrom being directed through the transocularly-positioned fiber to be absorbed by chromophores in the target tissue (cataractous lens, trabecular meshwork, vitreous membranes, tear duct occlusion) where removal by photoablation is effected.
    Type: Grant
    Filed: May 2, 1994
    Date of Patent: June 26, 2001
    Inventor: Michael S. Berlin
  • Patent number: 6246892
    Abstract: A spectroscopic system for quantifying in vivo concentration of an absorptive pigment in biological tissue includes an oscillator for generating a first carrier waveform of a first frequency on the order of 108 Hz, a light source for generating light of at least two selected wavelengths modulated by the carrier waveform, and a detector for detecting radiation that has migrated over photon migration paths in the tissue from an input port to a detection port spaced several centimeters apart. At least one of the wavelengths is sensitive to concentration of an absorptive pigment present in the tissue, while the tissue exhibits similar scattering properties at the two wavelengths. A phase detector compares, at each wavelength, the detected radiation with the introduced radiation and determines therefrom the phase shift of the detected radiation at each wavelength.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: June 12, 2001
    Assignee: Non-Invasive Technology
    Inventor: Britton Chance
  • Patent number: 6241753
    Abstract: A method is disclosed for forming and contracting scar collagen below a tissue surface in a selected tissue site. An electromagnetic energy apparatus is provided and includes an electromagnetic energy source and a delivery device. The delivery device is positioned on the tissue surface. Electromagnetic energy is produced from the electromagnetic energy source and delivered through the tissue surface to the selected tissue site for a sufficient time to induce scar collagen formation in the selected tissue site. No more than a second degree burn is formed on the tissue surface. The scar collagen is then contracted. This method is particularly useful in tissue sites that are devoid or deficient in collagen.
    Type: Grant
    Filed: January 5, 1996
    Date of Patent: June 5, 2001
    Assignee: Thermage, Inc.
    Inventor: Edward W. Knowlton
  • Patent number: 6238385
    Abstract: A laser treatment apparatus having a guide beam forming mechanism for guiding a treatment laser beam to a diseased part, including a laser beam irradiation optical system which irradiates the diseased part with the treatment laser beam, a target for obtaining a position of the central fovea of a patient's eye which is projected to the fundus, and a fixation mark for fixing the patient's eye so that the central fovea is located at a predetermined position with respect to the target. With the laser treatment apparatus, the central fovea of a patient's eye is easily judged, and, even for a patient's eye having reduced central visual acuity, the fixation is stably conducted.
    Type: Grant
    Filed: June 2, 1998
    Date of Patent: May 29, 2001
    Assignee: Nidek Co., Ltd.
    Inventors: Seiyo Harino, Hirokazu Nakamura, Seiki Tomita, Yasuyuki Naito, Toshifumi Sumiya
  • Patent number: 6240308
    Abstract: Method and apparatus for archiving and simultaneous display of brain scan images and a plurality of brain maps. The brain maps are proportioned to the individual brain of the scan images by a three-dimensional alignment process. Two-dimensional and three-dimensional displays are supported.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: May 29, 2001
    Assignees: Medical Instrumentation and Diagnostics Corporation
    Inventors: Tyrone L. Hardy, Laura D. Brynildson
  • Patent number: 6238386
    Abstract: Sound energy of a proximally arranged sound source 30 and laser radiation of a therapeutic laser 17 are simultaneously transmitted with an endoscopic instrument via flexible waveguides 3 into the body interior. The sound energy is in a power and frequency range adequate for the cutting tissue 16 and the therapeutic laser 7 operates preferably in the near infrared. The waveguides are quartz glass fibers 3 which can transmit sound energy as well as also light energy.
    Type: Grant
    Filed: March 21, 1994
    Date of Patent: May 29, 2001
    Inventors: Gerhard Müller, Johannes Tschepe
  • Patent number: 6224590
    Abstract: A laser balloon catheter for emitting in a balloon, laser lights which are transmitted through optical fibers and for irradiating the tissue with the laser lights transmitted through the balloon comprises laser light emitting means having a laser light emitting end of said optical fibers or a laser light transmittable member provided at the emitting end of the optical fibers which receives the laser lights to emit them, a first inflatable balloon provided around said light emitting means for transmitting the laser lights from said emitting means toward the tissue, a first fluid passage for supplying fluid into said first balloon to inflate the same and for discharging the fluid therefrom to deflate the same, a second inflatable balloon provided in front of said first balloon, a second fluid passage for supplying the fluid into said second balloon to inflate the same and for discharging the fluid therefrom to deflate the same.
    Type: Grant
    Filed: November 1, 1995
    Date of Patent: May 1, 2001
    Assignee: S.L.T. Japan Co., Ltd.
    Inventor: Norio Daikuzono
  • Patent number: 6224589
    Abstract: A laser adapter 2 for mounting on a surgical microscope 4 includes a compactly configured laser 9 which supplies a therapeutic laser beam 10 at a suitable wavelength. In addition, a pulse energy monitoring device is provided in the laser adapter 4 which is used for the on-line energy measurement of the emitted laser pulses and whose output signals are applied as parameters for controlling the pulse energy emitted by the laser 9.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: May 1, 2001
    Assignee: Carl-Zeiss-Stiftung
    Inventors: Roland Brenner, Martin Wiechmann, Manfred Heymann, Peter Reimer, Theo Lasser
  • Patent number: 6221067
    Abstract: A method for modifying the curvature of a live cornea to correct a patient's vision. The live cornea is first separated into first and second opposed internal surfaces. Next, a laser beam or a mechanical cutting device can be directed onto one of the first and second internal surfaces, or both, if needed or desired. The laser beam or mechanical cutting device can be then used to incrementally and sequentially ablate or remove a three-dimensional portion of the cornea for making the cornea less curved. An ocular material is then introduced to the cornea to modify the curvature. The ocular material can be either a gel or a solid lens or a combination thereof. In one embodiment, a pocket is formed in the central portion of the cornea to receive an ocular material. In another embodiment, a plurality of internal tunnels are formed in the cornea to receive the ocular material. The ocular material can be either a fluid such as a gel or a solid member.
    Type: Grant
    Filed: October 20, 1995
    Date of Patent: April 24, 2001
    Inventor: Gholam A. Peyman
  • Patent number: 6217571
    Abstract: Methods for modifying a live cornea to correct a patient's vision. In the case of hyperopia, at least one slit is first made in the cornea for inserting a knife, a fiber optic cable or micro-cutting tool therein to separate an internal area of the cornea into first and second opposed internal surfaces such that a substantially circular area centered about the main optical axis of the cornea remains attached between the first and second internal surfaces. The laser beam or micro-cutting tool can be directed onto one of the first and second internal surfaces, or both, if needed or desired to incrementally and sequentially remove three-dimensional portions of the cornea. If a laser beam is used, then a flexible template can be inserted between the internal surfaces of the cornea for accurately controlling the pattern to be ablated within the cornea.
    Type: Grant
    Filed: September 16, 1999
    Date of Patent: April 17, 2001
    Inventor: Gholam A. Peyman
  • Patent number: 6214033
    Abstract: In photodynamic diagnosis and photodynamic therapy, the oscillating wavelength of laser light from a light source is fitted to a plurality of different kinds of photosensitizers and exciting conditions thereof. Moreover, diagnosis and treatment are achieved using a single light source. Concurrent diagnosis during treatment is realized as well. A semiconductor laser generates laser light having an oscillating wavelength which is variable and a full width at half maximum which is narrow. A light transmission line guides an irradiated laser light to the vicinity of a focus, an image transmission line observes the focus and the periphery thereof, a fluorescence light extracting device extracts only the fluorescence light emitted from a photosensitizer excited by the irradiated laser light, an image-pick-up/analyzing device picks up and analyzes an image of the extracted fluorescence light and an image display device displays the analyzing result.
    Type: Grant
    Filed: October 19, 1995
    Date of Patent: April 10, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshiteru Ii, Akira Kaneda, Takayoshi Yuzu, Toshiyoshi Yamamoto, Harubumi Kato, Katsuo Aizawa
  • Patent number: 6213999
    Abstract: An apparatus and method for igniting plasma in a surgical system is disclosed. A corona discharge is generated on a surgical handpiece which is used to ignite a plasma arc for surgical operations. The advantages include greater reliability and repeatability of plasma arc ignition. The apparatus comprises a handpiece incorporating an active electrode, a passage for ionizable gas, and a corona return electrode. The corona return electrode has a terminus on the holder and near the distal end of the holder. The corona return electrode is electrically connected to the return path of the electrosurgical generator. A non-uniform electric field is generated between the active electrode and the corona return electrode of sufficient strength so that a corona is formed near the active electrode. A separate return electrode may be on the patient, or the apparatus may be configured for bipolar electrosurgical operation by carrying the return electrode on the handpiece.
    Type: Grant
    Filed: September 22, 1997
    Date of Patent: April 10, 2001
    Assignee: Sherwood Services AG
    Inventors: Robert C. Platt, Jr., Robin Badih Bek
  • Patent number: 6210399
    Abstract: A noncontact laser microsurgical apparatus and method for marking a cornea of a patient's or donor's eye in transplanting surgery or keratoplasty, and in incising or excising the corneal tissue in keratotomy, and for tissue welding and for thermokeratoplasty. The noncontact laser microsurgical apparatus comprises a laser source and a projection optical system for converting laser beams emitted from the laser source into coaxially distributed beam spots on the cornea. The apparatus further includes a multiple-facet prismatic axicon lens system movably mounted for varying the distribution of the beam spots on the cornea. In a further embodiment of the method of the present invention, an adjustable mask pattern is inserted in the optical path of the laser source to selectively block certain portions of the laser beams to thereby impinge only selected areas of the cornea.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 3, 2001
    Assignee: University of Miami, School of Medicine, Department of Ophthalmology
    Inventors: Jean-Marie Parel, Takashi Yokokura, Katsuhiko Kobayashi
  • Patent number: 6210403
    Abstract: An electrosurgical generator control responds to tissue impedance between active and return electrodes during desiccation. Active and return generator leads to supply energy and a user control sets the level of energy desired for electrosurgery. Voltage and current sensing circuits respond to high frequency energy in the leads to signal voltage and current in the leads. A multiplier receives the signals to calculate power. A clock sets units of time during for which power calculation. An integrator calculates the energy supplied through the leads per time unit. The user control sets a reference signal for the energy level desired. A correlation circuit receives the energy calculations from the integrator and the reference signal and provides a feedback signal to indicate when the energy calculation equals the user control setting for altering the generator supply of energy to the leads.
    Type: Grant
    Filed: October 7, 1993
    Date of Patent: April 3, 2001
    Assignee: Sherwood Services AG
    Inventor: Michael S. Klicek
  • Patent number: 6203539
    Abstract: An ophthalmological surgery system and method for performing ablative photodecomposition of the corneal surface by offset image scanning. The image of a variable aperture, such as a variable width slit and variable diameter iris diaphragm, is scanned in a preselected pattern to perform ablative sculpting of predetermined portions of a corneal surface. The scanning is performed with a movable image offset displacement mechanism capable of effecting radial displacement and angular rotation of the profiled beam exiting from the variable aperture. The profiled beam is rotated by rotating the aperture in conjunction with the offset displacement mechanism. The invention enables wide area treatment with a laser having a narrower beam, and can be used in the treatment of many different conditions, such as hyperopia, hyperopic astigmatism, irregular refractive aberrations, post ablation smoothing and phototherapeutic keratectomy.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: March 20, 2001
    Assignee: VISX, Incorporated
    Inventors: John K. Shimmick, William B. Telfair, Charles R. Munnerlyn, Herrmann J. Glockler
  • Patent number: 6203538
    Abstract: A method for modifying the curvature of a live cornea to correct a patient's vision. First, at least one relatively small opening is made in the cornea for inserting a fiber optic cable or micro-cutting tool therein to create a pocket or cavity with first and second opposed internal surfaces. The laser beam or micro-cutting tool can be directed onto one of the first and second internal surfaces, or both, if needed or desired to incrementally and sequentially ablate or remove three-dimensional portions of the cornea. If a laser beam is used, then a flexible template can be inserted into the opening in the cornea for accurately controlling the pattern to be ablated within the cornea. Preferably, the live cornea is then left alone to collapse and obtain its new refractive power by waiting a set period of time. After waiting the set period of time, the cornea is then examined to determine the new refractive power of the cornea.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: March 20, 2001
    Inventor: Gholam A. Peyman
  • Patent number: 6200313
    Abstract: A puncture instrument capable of punctured high frequency treatments. The puncture instrument essentially includes: a guide tube to be inserted into an intracavitary portion of a patient; a puncture needle member having an elongated needle body slidably received in the guide tube, and a sharp-pointed needle head provided contiguously at the fore end of the elongated needle body and protrudable out of the guide tube to penetrate into a target intracorporeal portion to be treated when the needle body is manipulated in a forward direction; and a high frequency electrode provided on a fore end portion of the needle body to be penetrated into the target intracorporeal portion together with the sharp-pointed needle head.
    Type: Grant
    Filed: May 1, 1997
    Date of Patent: March 13, 2001
    Assignee: Fuji Photo Optical Co., Ltd.
    Inventors: Kenji Abe, Mituo Kondo
  • Patent number: 6193711
    Abstract: An Er:YAG laser system has a resonant cavity including an Er:YAG rod pulse-pumped by a pulsed flashlamp. The pump-pulse repetition rate and average power is selected to provide a known essentially constant thermal-lensing power in the Er:YAG rod. Design parameters of the Er:YAG rod and the resonant cavity are selected to compensate for this thermal-lensing power. A shutter in the resonant cavity, when closed or open, respectively prevents or allows a laser output-pulse to be generated in response to a pump-pulse. Laser output-pulse duration is continuously variable and is controlled by controlling the duration of flashlamp-pulses. A sequence of laser output-pulses is controlled by opening and closing the shutter. This arrangement has the advantage that the laser output-pulse repetition rate can be selected to be the flashlamp-pulse repetition rate or some sub-multiple thereof while maintaining thermal-lensing power in the rod essentially constant and compensated for.
    Type: Grant
    Filed: December 12, 1997
    Date of Patent: February 27, 2001
    Assignee: Coherent, Inc.
    Inventors: Kevin Connors, Greg Spooner, Ralph Saunders
  • Patent number: 6192260
    Abstract: Methods and apparatus using the principles of time-resolved spectroscopy are disclosed. The present invention employs incident light pulses of sufficiently short duration to permit the rate of the rise and decay of such pulses to be measured. Consequently, the rate of decay, u, permits a determination of the concentration of an absorptive pigment, such as hemoglobin. The present invention also allows the precise path length the photons travel to be determined. Using this path length information and by measuring changes in optical density using known continuous light (CW) spectrophotometry systems, the methods and apparatus disclosed allow changes in the concentration of an absorptive pigment to be correctly be measured. From these data, the oxygenation state of a tissue region, such as the brain, can be accurately determined in real time.
    Type: Grant
    Filed: April 30, 1992
    Date of Patent: February 20, 2001
    Assignee: Non-Invasive Technology, Inc.
    Inventor: Britton Chance
  • Patent number: 6165139
    Abstract: Patient treatment is carried out under magnetic resonance imaging (MRI) guidance. The treated region of anatomy may be a joint, an organ or other tissue, or a tumor. Instruments which can be guided by MRI allow the treated region of anatomy to be reached along a selected path, curved or straight, to reduce tissue injury. The delivery of treatments under MRI guidance and monitoring provides a method of identifying a preferred treatment regimen.
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: December 26, 2000
    Assignee: Fonar Corporation
    Inventor: Raymond V. Damadian