Patents Examined by David M. Shay
  • Patent number: 5897549
    Abstract: A process for treating relatively deep formations of undesirable sub-epidermal tissue by heating water in the formations with a laser to denature proteins therein. In an exemplary embodiment, a laser beam is operated to irradiate a target region of highly vascularized dermal tissue in a blood-circulating living being, such as a human. The laser light preferably has a wavelength of about 1.45-1.68 .mu.m. This operating parameter provides the laser beam with a low enough water absorption coefficient to facilitate adequate penetration in to the target area while still providing enough energy to heat water to a temperature capable of spatially conforming vascularized tissue in the target area.
    Type: Grant
    Filed: July 11, 1996
    Date of Patent: April 27, 1999
    Assignee: Lumedics, Ltd.
    Inventor: Nikolai Tankovich
  • Patent number: 5885273
    Abstract: A method and apparatus for removing hair is disclosed. The method includes the step of producing a plurality of pulses of incoherent electromagnetic energy. The delay between pulses is in the range of 0.1 msec to 100 msec. The incoherent electromagnetic energy is then coupled to an area of surface of the tissue that includes more than one hair follicle. One or more filters are used to provide energy having a wavelength selected in accordance with the color of the hair. The method may alternatively include the step of applying a gel on a surface of the tissue to cool the tissue. The energy heats the hairs and hair follicles, without heating the tissue. The apparatus includes a source of pulsed incoherent electromagnetic energy. The source is located within a housing, and a coupler directs the incoherent electromagnetic energy to the surface of the tissue.
    Type: Grant
    Filed: February 9, 1996
    Date of Patent: March 23, 1999
    Assignee: ESC Medical Systems, Ltd.
    Inventors: Shimon Eckhouse, Hillel Bachrach
  • Patent number: 5885280
    Abstract: An electrosurgical electrode connector instrument for use in rapidly and easily connecting/disconnecting a disposable electrosurgical tip to and from a non-disposable mounting body. The non-disposable body includes a rod-like extension equipped with a pair of specially shaped projecting pins each having ramps and a curved surface. These pins are positioned on opposite sides of the rod-shaped extension. The disposable electrosurgical tip is provided at its proximal end with a tunnel-like recess having a pair of longitudinally disposed slots to define a pair of bifurcated cantilevered springy wall members each fitted with a small pin-locking aperture, thus adapting the disposable tip for telescopic engagement with the rod-like extension so that the recess of the disposable tip can be slid onto the rod-like extension with the specially shaped pins spreading the springy wall members slightly.
    Type: Grant
    Filed: November 8, 1995
    Date of Patent: March 23, 1999
    Assignee: MegaDyne Medical Products, Inc.
    Inventors: William S. Nettekoven, Eric S. Steckel
  • Patent number: 5885277
    Abstract: The invention concerns an endoscopic instrument for the high frequency surgical treatment of tissue in body cavities by using a liquid produced as a result of a wash penetrating the cavity. The instrument has a shaft which can be introduced into the cavity and by means of which an active electrode can be placed in the liquid volume. The instrument further has a neutral electrode and a high-frequency generator to which both electrodes are connected by insulated leads. The invention is characterized in that the neutral electrode is arranged at a distance from the active electrode in the liquid volume.
    Type: Grant
    Filed: February 27, 1997
    Date of Patent: March 23, 1999
    Assignee: Olympus Winter & Ibe GmbH
    Inventor: Knut Korth
  • Patent number: 5868742
    Abstract: Non-insulated surgical instruments are referenced to the electrical potential of a patient during minimally invasive electrosurgery to prevent unintentional patient burns, should the surgical instruments become accidentally energized during the electrosurgical procedure. An auxiliary safety electrode separate from the primary return electrode is attached to the patient at a location separate from the attachment point of the primary return electrode. Each non-insulated surgical instrument is preferably attached to the auxiliary electrode by a separate electrical conductor. The electrical conductor transfers to the auxiliary electrode any electrical energy which is accidentally applied to the instrument during the course of the electrosurgical procedure. The size of the auxiliary electrode is sufficient to safely disperse the electrical charge without burning the patient.
    Type: Grant
    Filed: October 18, 1995
    Date of Patent: February 9, 1999
    Assignee: Conmed Corporation
    Inventors: Michael R. Manes, John Gentelia
  • Patent number: 5865829
    Abstract: A medical optical system includes an observation optical system for guiding light emitted from a light source to a predetermined part to be illuminated, and causing light reflected from the predetermined part to be incident on the observation optical system. The medical optical system further includes a light separator, a guide optical system, and a display unit. The light separator is disposed at an intermediate part of the observation optical system, for separating the reflected light into reflected light of a visible observation wavelength area to be passed therethrough and reflected light or fluorescent light of the other wavelength area to be extracted therefrom. The guide optical system guides the light separated and extracted by the light separator to an image pick-up device so that an image of the separated light is formed on the image pick-up device. And the display unit displays the separated light image picked up by the image pick-up device.
    Type: Grant
    Filed: November 17, 1995
    Date of Patent: February 2, 1999
    Assignee: Kabushiki Kaisha Topcon
    Inventor: Nobuaki Kitajima
  • Patent number: 5865830
    Abstract: A noncontact laser microsurgical apparatus and method for marking a cornea of a patient's or donor's eye in transplanting surgery or keratoplasty, and in incising or excising the corneal tissue in keratotomy, and for tissue welding during thermokeratoplasty. The noncontact laser microsurgical apparatus comprises a laser source and a projection optical system for converting laser beams emitted from the laser source into coaxially distributed beam spots on the cornea. The apparatus further includes a multiple-facet prismatic axicon lens system movably mounted for varying the distribution of the beam spots on the cornea. In a further embodiment of the method of the present invention, an adjustable mask pattern is inserted in the optical path of the laser source to selectively block certain portions of the laser beams to thereby impinge only selected areas of the cornea.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: February 2, 1999
    Inventors: Jean-Marie Parel, Takashi Yokokura, Katsuhiko Kobayashi
  • Patent number: 5865832
    Abstract: A method, apparatus and system for a transverse tracker is described that can greatly improve the accuracy, speed, range, reliability, versatility, safety, and efficacy of interventions such as laser microsurgery. The present invention provides means for stabilizing the motion of targets in a plane perpendicular to the axial direction, thus allowing an imaging system, diagnostics illumination, and/or laser beam to maintain a lock on the target area, regardless of its movement. Unique attributes provided in the tracking system include means for (1) sensing contrast in recognizable large scale boundaries such as the change between the cornea/sclera interface (limbus), thereby to determine the absolute location and orientation of these boundaries, all without having to resort to digital sampling techniques and (2) dual mode operation of an electronic control system compatible with all analog technologies, thereby substantially increasing the speed of operations over other, comparable digital method.
    Type: Grant
    Filed: August 15, 1995
    Date of Patent: February 2, 1999
    Assignee: VISX, Incorporated
    Inventors: Carl F. Knopp, Jerzy Orkiszewski, Jan Wysopal, Hanna J. Hoffman
  • Patent number: 5851178
    Abstract: This apparatus places the laser diode light source in the connector affixed to the distal end of the cable, proximate to the patient. The disposable portion of the probe simply consists of the apparatus required to affix the probe to the patient's appendage and the mating portion of the connector that interconnects with the cable. The disposable portion of the probe can be a minimalistic design since all the expensive elements are located in the medical monitoring instrument or the cable connector.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: December 22, 1998
    Assignee: Ohmeda Inc.
    Inventor: Kurt Albert Aronow
  • Patent number: 5849010
    Abstract: An electrosurgical apparatus has a radio-frequency generator (11) with a variable basic power setting and to which a cutting electrode (12) and a neutral electrode (13) are connected. A power measuring device (15) is connected to the electrodes (12, 13) and acts on a regulating stage (16) which is connected to the power regulating input of the radio-frequency generator (11). The number of sparkovers within a predetermined plural number of periods is determined and is set by regulation of the output power of the radio-frequency generator (11) to a constant value which lies beneath twice the predetermined plural number.
    Type: Grant
    Filed: October 30, 1995
    Date of Patent: December 15, 1998
    Assignee: Helmut Wurzer
    Inventors: Helmut Wurzer, Rainer Mackel
  • Patent number: 5849011
    Abstract: An electrosurgical device for medical treatment of tissue at a treatment site through a body opening. The device includes a sheath having proximal and distal extremities and having a passageway extending from the proximal extremity to the distal extremity. A guide tube is slidably mounted in the passageway of the sheath and has proximal and distal extremities and a lumen extending from the proximal extremity to the distal extremity. A needle electrode is slidably mounted in the lumen of the guide tube and has proximal and distal extremities. Insulation is coaxially disposed on the needle electrode. A handle adapted to be gripped by the human hand is provided and the proximal extremity of the guide tube is mounted on the handle. An assembly is carried by the handle for bending the distal extremity of the guide tube at an angle with respect to the longitudinal axis. The needle electrode is adapted to be coupled to an energy source.
    Type: Grant
    Filed: January 18, 1996
    Date of Patent: December 15, 1998
    Assignee: Vidamed, Inc.
    Inventors: Christopher Scott Jones, Phillip R. Sommer, James Allen Baker, Jr.
  • Patent number: 5843071
    Abstract: A method and apparatus for removing cataracts in which a flexible line preferably 1 mm or less in diameter is inserted through an incision into the anterior chamber until its end is adjacent the cataract. Coherent radiation, preferably at a frequency between 193 and 351 nm, is coupled to the cataract by an optical fiber in the line. An irrigation sleeve provided about the fiber and an aspiration sleeve extending partially around the irrigation sleeve conduct irrigating liquid to and remove ablated material from the anterior chamber and form with the optical fiber the flexible line.
    Type: Grant
    Filed: May 15, 1995
    Date of Patent: December 1, 1998
    Inventor: Patricia E. Bath
  • Patent number: 5843073
    Abstract: Laser energy produced by a laser operating in the mid-infrared region (approximately 2 micrometers) is delivered by an optical fiber in a catheter to a surgical site for biological tissue removal and repair. Disclosed laser sources which have an output wavelength in this region include: Holmium-doped Yttrium Aluminum Garnet (Ho:YAG), Holmium-doped Yttrium Lithium Fluoride (Ho:YLF), Erbium-doped YAG, Erbium-doped YLF and Thulium-doped YAG. For tissue removal, the lasers are operated with relatively long pulses at energy levels of approximately 1 joule per pulse. For tissue repair, the lasers are operated in a continuous wave mode at low power. Laser output energy is applied to a silica-based optical fiber which has been specially purified to reduce the hydroxyl-ion concentration to a low level. The catheter may be comprised of a single optical fiber or a plurality of optical fibers arranged to give overlapping output patterns for large area coverage.
    Type: Grant
    Filed: March 29, 1995
    Date of Patent: December 1, 1998
    Assignee: Rare Earth Medical, Inc.
    Inventor: Edward Lawrence Sinofsky
  • Patent number: 5833701
    Abstract: A device and method for the selective removal of corneal tissue, and change of curvature thereof, for refractive vision correction, and for removal of corneal tissue for therapeutic treatment of the cornea; by means of a deforming template in conjunction with a water jet keratome. The template is adapted to deform the cornea to provide a regular surface which can be transversely cut by the water jet, while the cornea is supported against movement. The water jet can be adjusted to cleanly separate defective epithelium tissue from the Bowman's layer. Use of the water jet keratome provides a cut corneal tissue surface of smoothness and polish, substantially equivalent to that of the original surface, thereby enhancing healing and transplantation effectiveness.
    Type: Grant
    Filed: September 13, 1996
    Date of Patent: November 10, 1998
    Assignee: Medjet, Inc.
    Inventor: Eugene Irving Gordon
  • Patent number: 5827264
    Abstract: A apparatus and method for controlling an apparatus for removing tissue from the eye performs various types of corrections using a relatively large beam, but oscillating, or dithering, that being to prevent reinforcing ridges from being formed during the tissue removal process. Further, various types of correction, such as hyperopia and astigmatism correction, are performed using a large beam that is scanned over the area to be ablated using overlapping shots. Further, the epithelium in the area to be treated is removed using an infrared fluorescent dye to dye the epithelium, and then observing the fluorescent patterns from the epithelium area to be removed. Once a certain area is no longer fluorescent after laser shots, smaller shots are then applied, selectively removing the epithelium from the remaining regions. Again, the fluorescence patterns are observed, and the process is repeated until no epithelium remains.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 27, 1998
    Assignee: Chiron Technolas GmbH Ophthalmologische Systeme
    Inventor: Kristian Hohla
  • Patent number: 5820551
    Abstract: A sensor system that detects a current representative of a compound in a liquid mixture features a two-electrode strip adapted for releasable attachment to signal readout circuitry. The strip comprises an elongated support (preferably flat) adapted for releasable attachment to the readout circuitry; a first conductor and a second conductor each extend along the support and comprise means for connection to the circuitry. An active electrode, positioned to contact the liquid mixture and the first conductor, comprises a single layer deposit of an enzyme capable of catalyzing a reaction involving the compound, a conductive material and an electron mediator, capable of transferring electrons between the enzyme-catalyzed reaction and the first conductor. A reference electrode is positioned to contact the mixture and the second conductor. The system includes circuitry adapted to provide an electrical signal representative of the current. The two-electrode strip is manufactured, e.g.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: October 13, 1998
    Inventors: Hugh Allen Oliver Hill, Irving John Higgins, James Michael McCann, Graham Davis
  • Patent number: 5810808
    Abstract: A surgical instrument is described that incorporates bipolar electrodes on opposing shearing members for passing a high frequency current through the tissue for causing hemostasis of the tissue and for cutting the tissue. An electrically insulating material is interposed between the shearing members so that the electrodes are spaced apart from 0.002 to 0.050 inches and the current passes between the opposing electrodes through the tissue and not between the opposing shearing surfaces. The insulating material has a higher hardness than the opposing members to reduce wear of the insulation and provide a self-sharpening feature. Methods of simultaneously causing tissue and severing tissue are also provided. The use of a constant voltage high frequency power supply to deliver current to the tissue to cause hemostasis is described in conjunction with those methods.
    Type: Grant
    Filed: January 3, 1997
    Date of Patent: September 22, 1998
    Assignee: Hemostatic Surgery Corporation
    Inventor: Philip E. Eggers
  • Patent number: 5807388
    Abstract: Myocardial revascularization is performed by an apparatus and method which forms channels in the myocardium from inside the ventricular cavity without penetrating the full thickness of the ventricular wall. A catheter has a fiber optic connected at its handling end to a laser, and terminates at the insertable end of the catheter. A servomotor controls the advancing of the fiber to stop positions relative to the catheter. At each stop position another channel is created. An aiming beam aids in directing the channel forming fiber end to different desired channel positions.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: September 15, 1998
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Valluvan Jeevanandam, Craig R. Smith
  • Patent number: 5807387
    Abstract: Optical designating device, especially for use in microsurgery, comprising a tool-carrier stage (2) integral with the optical instrument (1), supporting at least one light source (4, 5) for emitting a light beam (6, 7), said light source (4, 5) being offset in relation to the optical axis (10) of the optical instrument (1). The orientation of the light source (4, 5) in relation to the optical axis (10 ) of the microscope is determined in order to aim the light beam (6, 7) at a target point (15).
    Type: Grant
    Filed: May 20, 1996
    Date of Patent: September 15, 1998
    Assignee: Deemed International, S.A.
    Inventor: Herve Druais
  • Patent number: 5807385
    Abstract: Laser surgery is utilized to perform cosmetic surgery. A quartz fiber is used to direct the laser energy to the target area for the incision, division or resection of tissue. An endoscope may be utilized in conjunction with the quartz fiber to perform the cosmetic surgical techniques. One application utilizes laser energy to eliminate glabellar frown lines and/or forehead wrinkles. Another application employs laser energy to rectify brow descent. A further application uses laser energy to perform a neck lift. In yet another application, laser energy is utilized to reduce nasolabial folds. The use of laser energy in cosmetic surgical procedures greatly reduces the size of the incision required in the skin to perform cosmetic surgical procedures, and as a result greatly reduces the risks of potential complications.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: September 15, 1998
    Inventor: Gregory S. Keller