Patents Examined by David Turocy
  • Patent number: 9123510
    Abstract: A method for controlling in-plane uniformity of a substrate processed by plasma-assisted process in a reactor, includes: supplying a principal gas to a reaction space, and discharging radially the principal gas from the reaction space through an annular duct; and supplying an secondary gas to the reaction space from an area in close proximity to an outer periphery of a susceptor, outside an outer circumference of the substrate as viewed from above, so as to flow at least partially in an inward direction passing the outer circumference of the substrate, reversing the direction of the secondary gas to flow toward the annular duct in a vicinity of the outer circumference of the substrate, and discharging radially the secondary gas together with the principal gas from the reaction space through the annular duct.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: September 1, 2015
    Assignee: ASM IP HOLDING, B.V.
    Inventors: Ryu Nakano, Naoki Inoue
  • Patent number: 9114419
    Abstract: Method for dip treatment of an optical element, wherein the optical element is held, while it is being dipped, by a holding ring, the ring including a hoop for draining and encircling a peripheral edge of the optical element, thereby exerting continuous linear contact with the peripheral edge, the hoop forming an arc over more than 180° and being provided at each of its two ends with an outwardly-directed drip tab pointing away from the optical element.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: August 25, 2015
    Assignee: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQUE)
    Inventors: Pierre Caron, Annette Cretier, Annick Gascons
  • Patent number: 9090504
    Abstract: A coated article is provided with at least one infrared (IR) reflecting layer. The IR reflecting layer may be of silver or the like. In certain example embodiments, a titanium oxide layer is provided over the IR reflecting layer, and it has been found that this surprisingly results in an IR reflecting layer with a lower specific resistivity (SR) thereby permitting thermal properties of the coated article to be improved.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: July 28, 2015
    Assignees: Centre Luxembourgeois de Recherches Pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Industries Corp.
    Inventors: Jochen Butz, Uwe Kriltz, Artur Siwek, Anton Dietrich, Jens-Peter Müller, Jean-Marc Lemmer, Richard Blacker
  • Patent number: 9085822
    Abstract: Apparatus and a method for depositing a material on a substrate utilizes a distributor including a permeable member through which a carrier gas and a material are passed to provide a vapor that is deposited on a conveyed substrate. A secondary gas can be provided to promote uniform distribution of the material on the substrate.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: July 21, 2015
    Assignee: First Solar, Inc.
    Inventor: James F. Nolan
  • Patent number: 9081174
    Abstract: A method of making an electrowetting device includes: (a) providing a base that defines an inner space and that has an open end which defines an opening; (b) applying a first liquid of a magnetic ink to a predetermined region of the base within the inner space; (c) positioning the first liquid on the predetermined region of the base using a magnetic unit that is magnetically attractive to the first liquid; and (d) filling the inner space with a second liquid that is immiscible with the first liquid after step (c).
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: July 14, 2015
    Assignee: National Chung-Hsing University
    Inventor: Incha Hsieh
  • Patent number: 9062368
    Abstract: A method for in-situ monitoring of gas-phase photoactive organic molecules in real time while depositing a film of the photoactive organic molecules on a substrate in a processing chamber for depositing the film includes irradiating the gas-phase photoactive organic molecules in the processing chamber with a radiation from a radiation source in-situ while depositing the film of the one or more organic materials and measuring the intensity of the resulting photoluminescence emission from the organic material. One or more processing parameters associated with the deposition process can be determined from the photoluminescence intensity data in real time providing useful feedback on the deposition process.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: June 23, 2015
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Garen Vartanian, Cedric Rolin
  • Patent number: 9061943
    Abstract: A process for metalizing a ceramic surface or attaching a ceramic to a metal is provided. The process may comprise: immersing the ceramic into an aluminum or aluminum alloy melt, making the ceramic move or stay still relative to the melt to adhere the melt to the ceramic; and then removing the ceramic from the melt to unaffectedly cool the film adhered thereto. The process can attach an aluminum or aluminum alloy thin film having a thickness of several to tens of micrometers on a ceramic surface. The thin film is formed by solidification, and does not have microscopic faults such as oxide film inclusions or pores, therefore having proper physical of mechanical properties of aluminum. Ceramics or a ceramic and a metal can be brazed via the surface metalizing film, the bonding strength of their interface can over the strength of aluminum itself.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: June 23, 2015
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Xiaoshan Ning, Bo Wang, Sha Li, Guocai Li
  • Patent number: 9045819
    Abstract: Deterioration of the degree of vacuum in a vacuum chamber is prevented while securing adequate cooling performance by gas cooling. A substrate 21 is provided in a vacuum, and the cooling body 1 is provided close to a film non-formation surface of the substrate 21. A thin film is formed by depositing a film forming material on a film formation surface of the substrate 21 while introducing a cooling gas into between the substrate 21 and the cooling body 1. At this time, a gas which reacts with the film forming material is introduced as the cooling gas.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: June 2, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Kazuyoshi Honda, Yasuharu Shinokawa, Hiromasa Yagi, Satoshi Shibutani, Sadayuki Okazaki, Yuko Ogawa, Daisuke Suetsugu
  • Patent number: 9040120
    Abstract: An inorganic nanolayer surface coated polymer film product is disclosed with enhancements such as improved metallization capability, low cost, low polymer additives and modifiers, improved recyclability, and good web properties. Also method for priming a flexible film substrate to enhance the reactivity or wettability of the substrate for metallization is disclosed. A substrate film is coated with one or more nanolayers of a metal or metal oxide applied by CCVD and/or PECVD at open atmosphere. The deposited coating acts to enhance the surface energy of the film substrate and to and reduce the surface gauge variation of the substrate or supporting film, thereby enhancing the wettability of the film substrate for metallization and/or to improve the anti-block characteristics of the film. The deposited coatings may also act as a barrier layer for lowering the permeability of light, gas and vapor transmission through the substrate.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: May 26, 2015
    Assignee: FRITO-LAY NORTH AMERICA, INC.
    Inventors: Andrew Hunt, Yongdong Jiang, Kenneth Scott Laverdure, Anthony Robert Knoerzer
  • Patent number: 9034430
    Abstract: A method for preparing a metal substrate for inkjet CTP, comprising: treating a metal substrate by anodizing or non-anodizing (such as sandpaper burnishing, sand blasting, polishing, or brushing), and then applying a hydrophilic polymer paint on the surface of the metal substrate. Due to the existence of nano-size or micron-size oxide particles in the hydrophilic polymer paint, the metal substrate has high specific surface energy, while the metal substrate has a certain roughness, therefore the metal substrate has ink absorbency and good abrasive resistance. The metal substrate can reduce the spread of ink droplets and produces print image having better resolution and definition. The non-anodizing method can avoid environmental pollution which is caused by waste acid and waste alkali discharge of anodizing method.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: May 19, 2015
    Assignee: Institute of Chemistry, Chinese Academy of Sciences
    Inventors: Haihua Zhou, Yanlin Song
  • Patent number: 9028920
    Abstract: Embodiments of a method of pretreating a metal substrate prior to painting comprise applying a first coating solution onto the metal substrate wherein the first coating solution comprises polyaniline particles at a pH less than 7 to yield a first coating on the metal substrate, rinsing the metal substrate to remove unreacted polyaniline particles, and applying a second coating solution post-rinse which comprises at least one acid and a silane composition at a pH less than 7 to yield a second coating on the metal substrate.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: May 12, 2015
    Assignee: DuBois Chemicals, Inc.
    Inventors: David Schimpff, Bruce Dunham, William Frisz, Jun O. Zhang
  • Patent number: 9017758
    Abstract: A coating agent composition obtained by mixing fine inorganic oxide particles, a polymerizable alkoxysilane compound, a polymerizing catalyst, an acid aqueous solution and an organic solvent, and satisfying the following conditions (1) to (3): (1) the polymerizing catalyst is at least partly an acetylacetonato complex; (2) a ?-dicarbonyl compound (excluding acetylacetonato complex) having two carbonyl groups in the molecule via a carbon atom, is further contained as a catalyst stabilizer; and (3) the fine inorganic oxide particles and the alkoxysilane compound are contained in a total amount of 23 to 40% by mass.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: April 28, 2015
    Assignee: Tokuyama Corporation
    Inventors: Noriaki Tahara, Junji Momoda, Katsuhiro Mori
  • Patent number: 8999436
    Abstract: Provided are an optical functional film including at least one functional layer, where the functional layer comprises a copolymer having a polymerization unit derived from a fluoroaliphatic group-containing monomer in a content of 10 weight % or more and the fluoroaliphatic group-containing copolymer is localized on the surface of the functional layer; an optical functional film obtained by coating an upper layer on the functional layer; an antireflection film, where the upper layer is a low refractive index layer; a polarizing plate using such a film for one of two protective sheets of a polarizer; and an image display device using the above-described optical functional film, antireflection film or polarizing plate for the outermost surface of the display.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: April 7, 2015
    Assignee: FUJIFILM Corporation
    Inventor: Shuntaro Ibuki
  • Patent number: 8999435
    Abstract: A process of producing a grating to be used in an X-ray image pickup apparatus includes the steps of preparing a grating having a plurality of protrusions periodically arranged, curving the grating in the direction in which the plurality of protrusions is arranged, and filling spaces between the protrusions with a metal in a state that the grating is curved.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: April 7, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yutaka Setomoto, Atsunori Terasaki
  • Patent number: 8974861
    Abstract: Embodiments of the present disclosure include processes for autodepositing a coating on a metal surface, a method of producing a coating on a non-stainless steel metal substrate surface, and an alkaline coating composition, where the process for autodepositing a coating on a metal substrate surface includes immersing at least a portion of the metal substrate surface in a coating composition that includes a latex and an amount of base sufficient to raise the pH of the composition to an alkaline pH, where the coating autodeposits on the metal substrate surface, as metal ions from the metal substrate surface interact with the alkaline coating composition.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: March 10, 2015
    Assignee: Arkema Inc.
    Inventors: Gregory D. Shay, David J. Brennan, Herbert F. Davis
  • Patent number: 8956700
    Abstract: A method for adhering a coating to a substrate structure comprises selecting a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress, modifying the outer surface to provide a textured region having steps to adhere a coating thereto, and applying a coating to extend over at least a portion of the textured region, wherein the steps are oriented substantially perpendicular to the direction of radial stress to resist deformation of the coating relative to the substrate structure. A rotating component comprises a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress. The outer surface defines a textured region having steps to adhere a coating thereto, and a coating extends over at least a portion of the textured region. The steps are oriented substantially perpendicular to the direction of radial stress to resist creep.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: February 17, 2015
    Assignee: General Electric Company
    Inventors: Glenn Curtis Taxacher, Andres Garcia Crespo, Herbert Chidsey Roberts, III
  • Patent number: 8927056
    Abstract: A dielectric layer 2 is formed on a region including grid-shaped convex portions 1a of a resin substrate 1 having the grid-shaped convex portions 1a with pitches of 80 nm to 120 nm on its surface, and metal wires 3 are formed on the dielectric layer 2. It is thereby possible to obtain a wire grid polarizer having a microstructural concavo-convex grid with pitches of the level of 120 nm or less that has not been implemented.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: January 6, 2015
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Hiroshi Yamaki, Yusuke Sato, Takuji Namatame, Yasuyuki Kawazu
  • Patent number: 8916233
    Abstract: Methods and apparatuses for coating at least a portion of a curved surface of a lens with a polarizing liquid are disclosed throughout the specification. For example, there is provided a method comprising providing a lens having a curved surface, and applying a polarizing liquid to at least a portion of the curved surface by shear flow with a flexible apparatus. Other methods are included. Apparatuses include ophthalmic lenses having polarized coatings formed according to any of the disclosed methods.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: December 23, 2014
    Assignee: Essilor International (Compagnie Generale d'Optique)
    Inventors: Herbert Mosse, Richard Muisener
  • Patent number: 8906471
    Abstract: For depositing a metallic film, the following steps are repeatedly conducted: a step in which a precoat film is formed on the inside of a chamber; a step in which two or more substrates to be treated are subjected to the deposition of a metallic film thereon by introducing each substrate into the precoated chamber, placing the substrate on the stage, feeding a treating gas while heating the substrate to generate a plasma of the treating gas, and depositing a metallic film on the substrate by plasma CVD; and a step in which after the film deposition on the substrates has been completed, a cleaning gas is introduced into the chamber to conduct dry cleaning. In the step in which two or more substrates to be treated are subjected to the deposition of a metallic film thereon, a conductive film is formed on the stage one or more times in the course of the step.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: December 9, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Shinya Okabe
  • Patent number: 8895108
    Abstract: A method for forming a thin film using radicals generated by plasma may include generating radicals of a reactant precursor using plasma; forming a first thin film on a substrate by exposing the substrate to a mixture of the radicals of the reactant precursor and a source precursor; exposing the substrate to the source precursor; and forming a second thin film on the substrate by exposing the substrate to the mixture of the radicals of the reactant precursor and the source precursor. Since the substrate is exposed to the source precursor between the formation of the first thin film and the formation of the second thin film, the rate of deposition may be improved.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: November 25, 2014
    Assignee: Veeco ALD Inc.
    Inventor: Sang In Lee