Patents Examined by David Turocy
  • Patent number: 8728571
    Abstract: Provided is a fabrication method for a functional surface that has self-cleaning ability and superhydrophilic anti-reflective property, which includes a) arranging a plurality of beads having a sphere shape on a surface of a transparent substrate; b) forming a predetermined inter-bead gap by etching the plurality of beads; c) forming a surface unevenness on the surface of the substrate by etching the substrate using the plurality of the beads having the predetermined gap as an etching mask; d) removing the plurality of the beads from the surface of the substrate; and e) forming a photocatalytic layer or a compound layer having a surface tension of 18 to 28 N/m on the surface of the substrate formed with the surface unevenness.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: May 20, 2014
    Assignee: Korea Institute of Machinery and Materials
    Inventors: Hyuneui Lim, Seungmuk Ji, Jun-Hee Lee, Wan-Doo Kim
  • Patent number: 8728588
    Abstract: A method of treating a surface of at least one part by individual sources of an electron cyclotron resonance plasma is characterized by subjecting the part(s) to at least one movement of revolution with regard to at least one fixed linear row of elementary sources. The linear row or rows of elementary sources are disposed parallel to the axis or axes of revolution of the part or parts.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: May 20, 2014
    Assignee: H.E.F.
    Inventors: Beat Schmidt, Christophe Heau, Philippe Maurin-Perrier
  • Patent number: 8715790
    Abstract: A method of forming carbon nanotubes by plasma enhanced chemical vapor deposition using a carbon containing gas plasma, wherein the carbon nanotubes are not formed on a substrate at a temperature 300° C. or above.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: May 6, 2014
    Assignee: University of Surrey
    Inventors: Sembukutiarachilage Ravi Silva, Sajad Haq, Bojan O. Boskovic
  • Patent number: 8715789
    Abstract: A method and apparatus for plasma enhanced chemical vapor deposition to an interior region of a hollow, tubular, high aspect ratio workpiece are disclosed. A plurality of anodes are disposed in axially spaced apart arrangement, to the interior of the workpiece. A process gas is introduced into the region. A respective individualized DC or pulsed DC bias is applied to each of the anodes. The bias excites the process gas into a plasma. The workpiece is biased in a hollow cathode arrangement. Pressure is controlled in the interior region to maintain the plasma. An elongated support tube arranges the anodes, and receives a process gas tube. A current splitter provides a respective selected proportion of a total current to each anode. One or more notch diffusers or chamber diffusers may diffuse the process gas or a plasma moderating gas. Plasma impedance and distribution may be controlled using various means.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: May 6, 2014
    Assignee: Sub-One Technology, Inc.
    Inventors: Deepak Upadhyaya, Karthik Boinapally, William J. Boardman, Matthew MaMoody, Thomas B. Casserly, Pankaj Jyoti Hazarika, Duc Doan
  • Patent number: 8709551
    Abstract: Methods and hardware for depositing ultra-smooth silicon-containing films and film stacks are described. In one example, an embodiment of a method for forming a silicon-containing film on a substrate in a plasma-enhanced chemical vapor deposition apparatus is disclosed, the method including supplying a silicon-containing reactant to the plasma-enhanced chemical vapor deposition apparatus; supplying a co-reactant to the plasma-enhanced chemical vapor deposition apparatus; supplying a capacitively-coupled plasma to a process station of the plasma-enhanced chemical vapor deposition apparatus, the plasma including silicon radicals generated from the silicon-containing reactant and co-reactant radicals generated from the co-reactant; and depositing the silicon-containing film on the substrate, the silicon-containing film having a refractive index of between 1.4 and 2.1, the silicon-containing film further having an absolute roughness of less than or equal to 4.5 ? as measured on a silicon substrate.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: April 29, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Keith Fox, Dong Niu, Joe Womack, Mandyam Sriram, George Andrew Antonelli, Bart van Schravendijk, Jennifer O'Loughlin
  • Patent number: 8703249
    Abstract: A clamping ring configured to be coupled to a chamber structure of a plasma processing chamber is disclosed. The clamping ring has a plurality of holes for accommodating a plurality of fasteners. The clamping ring includes a plurality of flanges disposed around an outer periphery of the clamping ring, adjacent flanges of the plurality of flanges being disposed such that a hole of the plurality of holes that is disposed in between the adjacent flanges is about equidistant from the adjacent flanges. The plurality of flanges are configured to mate with the chamber structure. The clamping ring and the flanges are dimensioned such that when the plurality of flanges mate with the chamber structure, recesses between adjacent ones of the plurality of flanges form gaps between the clamping ring and the chamber structure.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: April 22, 2014
    Assignee: Lam Research Corporation
    Inventors: Jose Tong, Eric H. Lenz
  • Patent number: 8703242
    Abstract: The invention relates to a method for hot-dip coating hot-rolled steel strip, during which the steel strip passes through a pickling station, a rinsing station, a drying station, a heating furnace and then through a molten bath. The final thickness and the thickness tolerance of the hot-dip coated steel strip are achieved by a controlled thickness reduction in a roll stand in the process line. The achievement of the finished thickness is controlled by at least one thickness measuring unit at the outlet of the roll stand, and deviations upward or downward therefrom are fed back in the form of an actuating signal for actuating the roll stand in order to appropriately increase or decrease the thickness reduction. The invention also relates to an installation for producing a steel strip of the aforementioned type.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: April 22, 2014
    Assignee: SMS Siemag Aktiengesellschaft
    Inventors: Hans-Georg Kloeckner, Andreas Gramer
  • Patent number: 8697193
    Abstract: An engagement head for engaging a porous substrate includes at least two pin sets, each pin set including a plurality of pins arranged in a plurality of parallel pin rows at a predetermined pin angle, wherein pins of immediately neighboring pin rows are arranged such that pin angles for the pins in a pin row are inversely symmetrical to pin angles for the pins in a neighboring pin row. The pins of a pin row move collectively in the same direction when a pin set is extended, which direction is determined by the pin angle of the pin row, whereby neighboring pin rows move in opposite longitudinal directions from one another when the pin set is extended. The pin sets may be extended and retracted in unison by a single actuation source.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: April 15, 2014
    Assignee: Ethicon, Inc.
    Inventors: Clifford Dey, Markus Bohn, Hans-Steffen Schacht, Ashley P. DeAnglis, Robert W. Van Holten, Dwayne Looney, Gerard Llanos, Avner Brandes
  • Patent number: 8679586
    Abstract: The present invention relates to a method for improving the corrosion-protecting pre-treatment of metal surfaces and using rinse water in a manner to conserve resources in such a corrosion-protecting pre-treatment, comprising a conversion treatment step using an aqueous composition comprising at least 50 ppm of the elements B, Si, Ti, Zr and/or Hf in the form of water-soluble compounds at a pH value of 3 to 5.5, wherein a minimum fraction of 10 ppm of the elements B, Si, Ti, Zr and/or Hf in the form of water-soluble compounds is present in the last pre-rinse step and a portion of the aqueous composition of the conversion treatment step is contained in the first post-rinse step. The resource-conserving use of the rinse water is accomplished according to the invention by way of a cascaded return of rinse water from the last rinse step to the first rinse step.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: March 25, 2014
    Assignee: Henkel AG & Co. KGaA
    Inventors: Franz-Adolf Czika, Sophie Cornen, Jens Kroemer, Michael Frank, Nicole Teubert, Jan-Willem Brouwer
  • Patent number: 8679594
    Abstract: The invention includes the structure of a multilayer protective coating, which may have, among other properties, scratch resistance, UV absorption, and an effective refractive index matched to a polymer substrate such as polycarbonate. Each layer may contain multiple components consisting of organic and inorganic materials. The multilayer protective coating includes interleaved organic layers and inorganic layers. The organic layers may have 20% or more organic compounds such as SiOxCyHz. The inorganic layers may have 80% or more inorganic materials, such as SiO2, SiOxNy, and ZnO, or mixtures thereof. Each layer of the multilayer protective coating is a micro layer and may have a thickness of 5 angstroms or less in various embodiments. The multilayer protective coating may contain in the order of hundreds or thousands of micro layers, depending upon the design requirement of applications. In each micro layer, the components may have substantially continuous variations in concentration.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: March 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Michael W. Stowell, Manuel D. Campo
  • Patent number: 8673396
    Abstract: A method of continuously forming a thin film includes the step of: moving a glass substrate with a thin strip shape having a constant db/2(d+b), where d is a thickness thereof and b is a width thereof in a cross section thereof, within a range from 0.015 to 0.15 through a film depositing region in which a reaction gas is supplied and a temperature is controlled to be high so that the glass substrate is rapidly heated; and moving continuously the glass substrate, immediately after the film depositing region, to pass through a cooling region in which a temperature is lower than that of the film depositing region, so that the glass substrate is rapidly cooled and the thin film formed of a component of the reaction gas is formed on the glass substrate.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: March 18, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Toshihiro Nakamura, Sadayuki Toda, Hisashi Koaizawa
  • Patent number: 8668962
    Abstract: New and improved microwave plasma assisted reactors, for example chemical vapor deposition (MPCVD) reactors, are disclosed. The disclosed microwave plasma assisted reactors operate at pressures ranging from about 10 Torr to about 760 Torr. The disclosed microwave plasma assisted reactors include a movable lower sliding short and/or a reduced diameter conductive stage in a coaxial cavity of a plasma chamber. For a particular application, the lower sliding short position and/or the conductive stage diameter can be variably selected such that, relative to conventional reactors, the reactors can be tuned to operate over larger substrate areas, operate at higher pressures, and discharge absorbed power densities with increased diamond synthesis rates (carats per hour) and increased deposition uniformity.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: March 11, 2014
    Assignees: Board of Trustees of Michigan State University, Fraunhofer USA
    Inventors: Jes Asmussen, Timothy Grotjohn, Donnie K. Reinhard, Thomas Schuelke, M. Kagan Yaran, Kadek W. Hemawan, Michael Becker, David King, Yajun Gu, Jing Lu
  • Patent number: 8652588
    Abstract: The invention relates to a method and apparatus for the application of a thin film coating of material onto a surface of an article which is to be exposed to aqueous conditions such as when in the sea or rivers. The invention allows for the formation of a coating which is resistant to fouling and which coating can be formed of materials which have significantly less adverse effect on the quality of the water in which the article is placed in comparison to conventional coating types.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: February 18, 2014
    Assignee: Teer Coatings Limited
    Inventors: Dennis Teer, Laurent Akesso, Parnia Navabpour
  • Patent number: 8647710
    Abstract: A method for production of a substrate having a patterned optical coating on a curved surface is provided. The method includes applying a masking to a sub-area of the curved surface applying an optical coating using a vacuum deposition method, and removing the masking. A coated substrate, which can be produced in particular by the method described above, is also provided. The coated substrate includes a curved surface that is provided with at least one patterned optical coating. The at least one patterned optical coating is provided on at least one sub-area of the curved surface and is missing on at least one adjacent sub-area.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: February 11, 2014
    Assignee: Schott AG
    Inventors: Thomas Küepper, Dieter Wittenberg, Christoph Moelle, Lutz Zogg
  • Patent number: 8628826
    Abstract: A method of producing an organic friction lining includes the steps of producing a liquid friction material pulp placing a fabric into the friction material pulp drying and saturating the friction material pulp together with the fabric placed therein and removing the fabric from the dried friction material.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: January 14, 2014
    Assignee: Hoerbiger Antriebstechnik GmbH
    Inventor: Werner Fürguth
  • Patent number: 8623465
    Abstract: A coating membrane forming method for forming a coating membrane on an object to be coated, the method comprising the steps of: setting the object to be coated for forming a coating membrane thereon in a dipping tank; sending an application liquid for forming the coating membrane into the dipping tank to raise a liquid level of the application liquid till the top of a region for forming the coating membrane thereon in the object to be coated is immersed in the application liquid; and thereafter discharging the application liquid outside the dipping tank to lower the liquid level of the application liquid.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: January 7, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Masami Nonokawa, Akimasa Ichikawa
  • Patent number: 8609195
    Abstract: The demulsifying cleaning of metallic surfaces which may be contaminated with oil(s) with at least one further nonpolar organic compound, with fat(s), with soap(s), with particulate dirt or with at least one anionic organic compound using an aqueous, alkaline, surfactant-containing bath solutions.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: December 17, 2013
    Assignee: Chemetall GmbH
    Inventors: Stella Bauerochse, Carola Komp, Ralph Van Den Berg, Peter Claude, Franz Dressler, Joachim Geldner, Zafer Yuksel, Eckart Schonfelder
  • Patent number: 8586147
    Abstract: A three-dimensionally embossed inscription containing a plurality of interconnected letters is connected, for dimensional stability, to a holding frame during a manufacturing process via supporting elements. After the end of the machining and manufacturing processes, the inscription is separated from the holding frame and has a shape which corresponds to the connected shape on the holding frame.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: November 19, 2013
    Assignee: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventor: Erhard Wolf
  • Patent number: 8586132
    Abstract: The present invention relates to a device and a method for coating a microstructured and/or nanostructured structured substrate. According to the present invention, the coating is performed in a vacuum chamber. The pressure level in the vacuum chamber is elevated during or after the charging of the vacuum chamber with coating substance.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: November 19, 2013
    Inventor: Erich Thallner
  • Patent number: 8580347
    Abstract: A method of the present invention for producing a calcium phosphate complex including a substrate and calcium phosphate bonded to a surface of the substrate, the method includes the steps of: (a) treating the surface of the substrate; and (b) bonding the calcium phosphate onto the surface of the substrate after the step (a), the step (a) being the step of placing the surface of the substrate in contact with ozone water. Therefore, the method of the present invention makes it possible to bond calcium phosphate and the substrate at a high bonding strength and at a high coverage. In addition, the method of the present invention provides an easy method for producing a calcium phosphate complex.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: November 12, 2013
    Assignees: Iwatani Corporation, National Cerebral and Cardiovascular Center
    Inventors: Kunihiko Koike, Masami Nakagawa, Tsutomu Furuzono