Patents Examined by Deborah Jones
  • Patent number: 6855429
    Abstract: An improved method of pretreating and electrostatically coating an article made of a material which has little or no conductivity, and the article made therefrom.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: February 15, 2005
    Inventor: Kevin E. Stay
  • Patent number: 6855952
    Abstract: A semiconductor device wherein a resin containing as a cross-linking component a compound having a plurality of styrene group and represented by chemical formula [1] is used as an insulating material: where R is a hydrocarbon structure which may have a substituent group or groups, R1 is hydrogen, methyl, or ethyl, m is and integer of 1 to 4, and n is an integer of not less than 2. With this, a semiconductor device and a semiconductor package which show excellent transmission characteristics and less power consumption are provided.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: February 15, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Akira Nagai, Satoru Amou, Shinji Yamada, Takao Ishikawa, Hiroshi Nakano
  • Patent number: 6855652
    Abstract: A structurally reinforced panel and a method of forming the panel are disclosed. The reinforcement includes a fibrous woven material in a bondable plastic matrix.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: February 15, 2005
    Assignee: L&L Products, Inc.
    Inventors: Christopher Hable, Michael J. Czaplicki
  • Patent number: 6855428
    Abstract: The present invention is a composite material and process to produce same. That material comprises a fibrous structure which is initially predominantly coated with elemental carbon; that fibrous structure is then subsequently predominantly coated with at least one ceramic material, e.g., boron carbide, which is non-reactive with silicon. The composite material also comprises a silicon matrix which is continuous and predominantly surrounds the fibrous structure, which has been initially predominantly coated with elemental carbon and subsequently predominantly coated with at least one ceramic material. The matrix which has a fine grain crystalline structure of predominantly 20 microns or less in size. The at least one ceramic material is discontinuous within that matrix. The fibrous material pulls out of the elemental carbon, which initially predominantly coats that fibrous structure, when the composite is subjected to fracture.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: February 15, 2005
    Assignee: B. F. Goodrich Company
    Inventors: Sai-Kwing Lau, Salvatore J. Calandra, Thomas D. Nixon, Edward R. Stover
  • Patent number: 6855408
    Abstract: A composite metallic material 1 according to the invention is used for, e.g., electrolytic capacitors, and includes a metallic material substrate 10 and a high polymer thin layer 11 having a fine pattern 12 formed on at least one surface of the substrate 10 by self-organization. This high polymer thin film 11 is formed by, for example, drying hydrophobic organic solvent solution of high polymer compound. By subjecting this composite metallic material 1 to etching processing, etching pits are formed uniformly with high density based on the fine pattern.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: February 15, 2005
    Assignee: Showa Denko K.K.
    Inventors: Masatsugu Shimomura, Masaru Tanaka, Hiroshi Yabu, Masafumi Takebayashi, Ryuji Monden, Tamami Koyama, Yoshikazu Hosoda, Masashi Sakaguchi
  • Patent number: 6855440
    Abstract: A construction product made from an extrudable composition formed into various shapes for use in deck-building systems and other applications is disclosed. The extrudable composition prepared from polyethylene polymeric compounds, such as HDPE, and mixed with a mineral such as fiberglass, mineral wool or sand, along with a pigment, has sufficient strength and other advantageous properties to be useful for those construction applications.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: February 15, 2005
    Inventor: Paul Bracegirdle
  • Patent number: 6852300
    Abstract: A sol-gel process allowing preparation, on a substrate, of glassy films of silicon oxide or mixed oxides based on silicon oxide, of thickness above 1 micrometer, generally between 2 and 20 micrometers and characterized by absence of defects, that turn out to be particularly suitable as waveguides in flat optical devices.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: February 8, 2005
    Assignee: Novara Technology S.r.l.
    Inventors: Lorenzo Costa, Pier Paolo Costa, Stefania Grandi
  • Patent number: 6852271
    Abstract: A flexible insulation blanket having a smoothly surfaced, secondarily bonded, ceramic matrix composite (CMC) outer layer, and a method of producing a flexible insulation blanket having a secondarily bonded CMC layer by forming a CMC prepreg layer comprising a woven ceramic fabric layer impregnated with a pre-ceramic slurry and layering the prepreg layer with a flexible insulation blanket. The blanket and prepreg layer are then compressed such that the prepreg layer abuts a rigid smoothly surfaced plate and the ceramic material is cured by heating while under compression. Pressure is then released and the insulation is fired to sinter the ceramic material of the CMC layer.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: February 8, 2005
    Assignee: The Boeing Company
    Inventor: Robert A. DiChiara, Jr.
  • Patent number: 6852425
    Abstract: The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: February 8, 2005
    Assignee: Ut-Battelle, LLC
    Inventor: Zhong-Cheng Hu
  • Patent number: 6852419
    Abstract: A coated article is provided so as to include a solar control coating having an infrared (IR) reflecting layer sandwiched between at least a pair of dielectric layers. The IR reflecting layer includes NbCr and/or NbCrNx in certain embodiments of this invention. The use of such materials as an IR reflecting layer(s) enables the coated article to have good corrosion resistance to alkaline solutions, good mechanical performance such as scratch resistance, and/or good color stability (i.e., a low ?E* value(s)) upon heat treatment (HT). The coated article may be heat treated (e.g., thermally tempered) in certain example embodiments of the invention.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: February 8, 2005
    Assignee: Guardian Industries Corp.
    Inventor: Grzegorz Stachowiak
  • Patent number: 6852420
    Abstract: According to the present invention, there is provided a mold constituted by an electrically conductive thin plate having a predetermined surface shape, and an electrically insulating reinforcement material, wherein the electrically conductive thin plate and the electrically insulating reinforcement material are bonded to each other by an anodic bonding method. Particularly, the electrically conductive thin plate is preferably formed out of silicon single crystalline and the electrically insulating reinforcement material is preferably oxide glass.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: February 8, 2005
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Hiroaki Yamamoto, Masahiro Hori, Koichiro Nakamura, Kenichi Nakama, Katsuhide Shimmo
  • Patent number: 6852406
    Abstract: An anti-static, anti-reflection, transparent coating for a transpatent substrate, the coating including at least one electrically conductive layer, wherein the sheet resistance of the coating is less than about 1010 ohm/square. The coating is preferably higher transparent.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: February 8, 2005
    Assignee: Sola International Holdings, Ltd.
    Inventors: Nadine Genevieve Marechal, Richard Simon Blacker
  • Patent number: 6852210
    Abstract: To provide a plating method, which enables wide industrial use of the redox system electroless plating method having excellent characteristics, and a plating bath precursor which is preferable for the plating method. The plating method comprises a process oxidizing first metal ions of a redox system of a plating bath from a lower oxidation state to a high oxidation state, and second metal ions of said redox system are reduced and deposited onto the surface of an object to be plated, wherein a process is provided in which by supplying the electrical current to the plating bath, the first metal ions are reduced from said lower oxidation state to thereby activate the plating bath. The plating bath precursor is formed stabilizing the plating bath so that reduction and deposition of the second metal ions substantially do not occur in order to improve its storing performance.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: February 8, 2005
    Assignees: Daiwa Fine Chemicals Co., Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Keigo Obata, Dong-Hyun Kim, Takao Takeuchi, Seiichiro Nakao, Shinji Inazawa, Ayao Kariya, Masatoshi Majima, Shigeyoshi Nakayama
  • Patent number: 6849336
    Abstract: The surfaces of an amorphous carbon substrate 10 of a scintillator panel 1 have undergone sandblasting, and an Al film 12 serving as a reflecting film is formed on one surface. A columnar scintillator 14 for converting incident radiation into visible light is formed on the surface of the Al film 12.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: February 1, 2005
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Takuya Homme, Toshio Takabayashi, Hiroto Sato
  • Patent number: 6849343
    Abstract: Interference pigment flakes and foils are provided which have color shifting properties. The pigment flakes can have a symmetrical coating structure on opposing sides of a reflector layer, can have an asymmetrical coating structure with all of the layers on one side of the reflector layer, or can be formed with encapsulating coatings around a core reflector layer. The coating structure of the flakes and foils includes a reflector layer, a dielectric layer on the reflector layer, and a titanium-containing absorber layer on the dielectric layer. The pigment flakes and foils exhibit a discrete color shift so as to have a first color at a first angle of incident light or viewing and a second color different from the first color at a second angle of incident light or viewing. The pigment flakes can be interspersed into liquid media such as paints or inks to produce colorant compositions for subsequent application to objects or papers.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: February 1, 2005
    Assignee: Flex Products, Inc.
    Inventors: Roger W. Phillips, Charlotte R. LeGallee, Paul T. Kohlmann, Vladimir Raksha, Alberto Argoitia
  • Patent number: 6846574
    Abstract: A device having an improved thermal barrier coating (46) and a process for manufacturing the same. A support structure (28) for retaining a ceramic insulating material (46) on a substrate (16) is formed by the deposition of a support structure material through a patterned masking material (14). The support structure can define cells into which the ceramic insulating material is deposited following removal of the masking material. The masking material may be patterned by known photolithographic techniques (22,24) or by laser etching (48). The support structure (28) may be a composite metal-ceramic material having either discreet layers (30,34) or a graded composition and may be deposited by an electro-desposition process followed by a heat treatment to form a solid state diffusion bond with the substrate.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: January 25, 2005
    Assignee: Siemens Westinghouse Power Corporation
    Inventor: Ramesh Subramanian
  • Patent number: 6846581
    Abstract: Disclosed is a perpendicular magnetic recording medium, comprising a nonmagnetic substrate, a longitudinal hard magnetic multi-layered film arranged on the nonmagnetic substrate, including a nonmagnetic intermediate layer and a pair of hard magnetic layers laminated one upon the other with the nonmagnetic intermediate layer interposed therebetween, and having at least two hard magnetic layers, a longitudinal soft magnetic layer formed on the longitudinal hard magnetic multi-layered film, and a perpendicular magnetic recording layer formed on the longitudinal soft magnetic layer. The perpendicular magnetic recording medium of the particular construction is capable of suppressing noise and achieves a high recording magnetic field intensity and a high recording resolution.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: January 25, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Soichi Oikawa, Yoichiro Tanaka, Takashi Hikosaka, Futoshi Nakamura
  • Patent number: 6844087
    Abstract: A material is provided that can be used for a light-emitting device. The base unit of said material is tris(8-quinolinolato)aluminum(III) (Alq3). This Alq3 is substituted in the said 3- or 4-position with an electron-donor group and simultaneously in the said 5-position with an electro-acceptor or p-delocalizing group. Using this material as an emitting luminescent layer, the efficiency of the intrinsic luminescence can be greatly enhanced.
    Type: Grant
    Filed: July 11, 2000
    Date of Patent: January 18, 2005
    Assignee: International Business Machines Corporation
    Inventors: Wanda Andreoni, Alessandro Curioni
  • Patent number: 6844085
    Abstract: With the objectives of alleviating the property of attacking on the mating member by scratching-off of local agglutinates on the sliding contact surface, achieving improved wear resistance, and achieving improved seizure resistance through restraint of frictional heat generation by a hard phase, a copper based sintered contact material contains shock-resistant ceramics in an amount of 0.05 to less than 0.5 wt % as non-metallic particles composed of one or more substances selected from pulverized oxides, carbides and nitrides. The shock-resistant ceramics are comprised of SiO2 and/or two or more substances selected from SiO2, Al2O3, LiO2, TiO2 and MgO.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: January 18, 2005
    Inventors: Takemori Takayama, Tetsuo Ohnishi, Yoshikiyo Tanaka, Keiichi Maeda, Kan'ichi Sato
  • Patent number: 6844057
    Abstract: A flexible insulation blanket having a smoothly surfaced, secondarily bonded, ceramic matrix composite (CMC) outer layer, and a method of producing a flexible insulation blanket having a secondarily bonded CMC layer by forming a CMC prepreg layer comprising a woven ceramic fabric layer impregnated with a pre-ceramic slurry and layering the prepreg layer with a flexible insulation blanket. The blanket and prepreg layer are then compressed such that the prepreg layer abuts a rigid smoothly surfaced plate and the ceramic material is cured by heating while under compression. Pressure is then released and the insulation is fired to center the ceramic material of the CMC layer.
    Type: Grant
    Filed: November 11, 2002
    Date of Patent: January 18, 2005
    Assignee: The Boeing Company
    Inventor: Robert A. DiChiara, Jr.