Patents Examined by Deborah L Malamud
  • Patent number: 10849564
    Abstract: Apparatus for automatically determining which type of resuscitation treatment is most appropriate for a patient.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: December 1, 2020
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A Freeman, James E Brewer
  • Patent number: 10850104
    Abstract: An implantable pulse generator that includes a current source/sink generator is disclosed herein. The current source/sink generator includes a current drive differential amplifier. The current driver differential amplifier is configured to selectively source current to, or sink current from a target tissue. The current drive differential amplifier includes an inverting input and a non-inverting input. One of the inputs of the current drive differential amplifier is connected to a virtual ground, and the other is connected to a current command. A stimulation controller can supply a voltage to the other of the inputs of the current drive differential amplifier to select either current sourcing or current sinking.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: December 1, 2020
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventor: Rabih Nassif
  • Patent number: 10814130
    Abstract: Disclosed herein are systems, devices, and methods for peripheral nerve stimulation, particularly for treating tremor. The nerve stimulation may be accomplished by a wearable nerve stimulation device, such as a band configured to be worn on the wrist or other body part. The device can accomplish targeted nerve stimulation using circumferentially spaced electrodes. In some embodiments, the device may use only the same number of electrodes as the number of nerves that are to be stimulated. A biphasic charge-balanced waveform may be used to selectively stimulate a nerve near one of the activated electrodes but not to stimulate the nerve near the other activated electrode. The device may use dry electrodes for long-term, repeated use. The dry electrodes may include a conductive base layer and a polymeric, plastic or rubber skin contact layer comprising a conductive filler. The filler may be a powder, fiber, conductive coating, etc.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: October 27, 2020
    Assignee: Cala Health, Inc.
    Inventors: Serena HanYing Wong, Gregory T. Schulte, Samuel Richard Hamner, Kathryn H. Rosenbluth, John Vincent Colombo
  • Patent number: 10780263
    Abstract: A lead assembly includes a lead with a distal end and a proximal end. The lead includes a plurality of electrodes disposed at the distal end and a plurality of terminals disposed at the proximal end. The lead also defines at least one central lumen and a plurality of outer lumens. The central and outer lumens extend from the proximal end to the distal end such that the plurality of outer lumens extend laterally from the at least one central lumen. The lead further includes a plurality of conductive wires. Each conductive wire couples at least one of the plurality of electrodes electrically to at least one of the plurality of terminals. At least two conductive wires are disposed in each of the plurality of outer lumens.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: September 22, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: John Michael Barker
  • Patent number: 10780270
    Abstract: The exemplified systems and methods facilitate a nerve conduction block at a target nerve using electrical stimulation applied from one or more electrodes located on a percutaneous lead that are placed in parallel, or substantially in parallel, and without direct contact, to a long axis of the peripheral nerve over an overlapping nerve region of greater than about 3 millimeters. The exemplified system and method can be further configured to block nerve condition without eliciting onset activity and co-excitation of non-targeted structures. The exemplified method and system can be performed using conventional percutaneous leads, though an improved percutaneous lead design is disclosed herein. In an aspect, an introducer is disclosed that facilitates accurate and consistent insertion of the percutaneous lead to the specified or intended position relative to the target nerve. In another aspect, a treatment kit comprising the various system components to treat pain is disclosed.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: September 22, 2020
    Assignee: Avent, Inc.
    Inventors: Eric A. Schepis, Phillip A. Schorr, Wanzhan Liu, Natalia Alexeeva, Shyamant R. Sastry, Amol Soin, David M. Page, Ryan Caldwell
  • Patent number: 10773088
    Abstract: Systems, devices, and techniques for establishing communication between two medical devices are described. In one example, an implantable medical device comprises communication circuitry, therapy delivery circuitry, and processing circuitry configured to initiate a communication window during which the implantable second medical device is capable of receiving the information related to a cardiac event detected by a first medical device, the communication window being one of a plurality of communication windows defined by a communication schedule that corresponds to a transmission schedule in which the first medical device is configured to transmit the information, control the communication circuitry to receive, from the first medical device, the information related to the cardiac event that is indicative of a timing of the cardiac event with respect to a timing of the communication window, schedule and control delivery of a therapy according to the information related to the cardiac event.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: September 15, 2020
    Assignee: Medtronic, Inc.
    Inventors: James K. Carney, Saul E. Greenhut, Jonathan L. Kuhn, James D. Reinke, David J. Peichel, James W. Busacker
  • Patent number: 10751543
    Abstract: Cardiac therapy devices in the form of pacemakers and/or defibrillators including one or more leads with electrodes implanted in a vein in a posterior position in combination with one or more leads with electrodes implanted in an anterior position. The posterior position may be chosen from one or more of the azygos, hemiazygos, accessory hemiazygos, or posterior intercostal veins. The anterior position may be chosen from the internal thoracic vein, an anterior intercostal vein, or an anterior subcutaneous location. In other examples, sensors are placed for use by a cardiac monitoring or therapy system in one or more of the internal thoracic vein, the azygos vein, the hemiazygos vein, the accessory hemiazygos vein, and/or an anterior or posterior intercostal vein.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 25, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: G. Shantanu Reddy, Eric Falbe Hammill, James O. Gilkerson, Ramesh Wariar, Pramodsingh Hirasingh Thakur
  • Patent number: 10751541
    Abstract: An implantable medical device system delivers a pacing pulse to a patient's heart and starts a first pacing interval corresponding to a pacing rate in response to the delivered pacing pulse. The system charges a holding capacitor to a pacing voltage amplitude during the first pacing interval. The system detects an increased intrinsic heart rate that is at least a threshold rate faster than the current pacing rate from a cardiac electrical signal received by a sensing circuit of the implantable medical device. The system starts a second pacing interval in response to an intrinsic cardiac event sensed from the cardiac electrical signal and withholds charging of the holding capacitor for at least a portion of the second pacing interval in response to detecting the increased intrinsic heart rate.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: August 25, 2020
    Assignee: Medtronic, Inc.
    Inventor: Robert T. Sawchuk
  • Patent number: 10744260
    Abstract: Techniques for modeling therapy fields for therapy delivered by medical devices are described. Each therapy field model is based on a set of therapy parameters and represents where therapy will propagate from the therapy system delivering therapy according to the set of therapy parameters. Therapy field models may be useful in guiding the modification of therapy parameters. As one example, a processor compares an algorithmic model of a therapy field to a reference therapy field and adjusts at least one therapy parameter based on the comparison. As another example, a processor adjusts at least one therapy parameter to increase an operating efficiency of the therapy system while substantially maintaining the modeled therapy field.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: August 18, 2020
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 10729907
    Abstract: Information relevant to making clinical decisions for a patient is identified based on electrical activity records of the patient's brain and electrical activity records of other patients' brains. A deep learning algorithm is applied to an electrical activity record of the patient, i.e., an input record, and to a set of electrical activity records of other patients, i.e., a set of search records, to obtain an input feature vector of the patient and a set of search feature vectors, each including features extracted by the deep learning algorithm. A similarities algorithm is applied to the input feature vector and the set of search feature vectors to identify a subset of search records most like the input record. Clinical information associated with one or more search records in the identified subset of search records is extracted from a database and used to make decisions regarding the patient's neuromodulation therapies.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 4, 2020
    Assignee: NeuroPace, Inc.
    Inventors: Sharanya Arcot Desai, Thomas K. Tcheng
  • Patent number: 10729387
    Abstract: A system and method for generating frequency-multiplexed synthetic sound-speech stimuli and for detecting and analyzing electrical brain activity of a subject in response to the stimuli. Frequency-multiplexing of speech copora and synthetic sounds helps the composite sound to blend into a single auditory object. The synthetic sounds are temporally aligned with the utterances of the speech corpus. Frequency multiplexing may include splitting the frequency axis into alternating bands of speech and synthetic sound to minimize the disruptive interaction between the speech and synthetic sounds along the basilar membrane and in their neural representations. The generated stimuli can be used with both traditional and advanced techniques to analyze electrical brain activity and provides a rapid, synoptic view into the functional health of the early auditory system, including how speech is processed at different levels and how these levels interact.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: August 4, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Lee Miller, Bartlett Moore, IV
  • Patent number: 10722175
    Abstract: A system (1) and apparatus comprising a multisensor guidewire (100/200/300) for use in interventional cardiology, e.g., Transcatheter Valve Therapies (TVT), comprises a plurality of optical sensors (10/20) for direct measurement of cardiovascular parameters, e.g. transvalvular blood pressure gradients and flow. A conventional outer coil wire (35) contains a shaped core wire (31) having a cross-section defining a channel surface (132), e.g. grooves (32), extending along its length, to position optical fibers (11) and optical sensors (10/20) in a channel (33). Advantageously, the core wire has a diameter that provides sufficient stiffness to the guidewire for use as a support guidewire for TVT, e.g. Transcatheter Aortic Valve Implantation (TAVI), while accommodating multiple sensors and fibers within a guidewire of outside diameter ?0.89 mm. An optical connector (112) couples the guidewire to a control system (150).
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: July 28, 2020
    Assignee: HemoCath Ltd.
    Inventors: Eric Caron, Luc Bilodeau
  • Patent number: 10722286
    Abstract: High-voltage pulses ablation systems and methods are used to ablate tissue and form lesions. A variety of different electrophysiology devices, such as catheters, surgical probes, and clamps, may be used to position one or more electrodes at a target location. Electrodes can be connected to power supply lines and, in some instances, the power to the electrodes can be controlled on an electrode-by-electrode basis. High-voltage pulse sequences provide a total amount of heating that is typically less than that which is observed with thermally-based radiofrequency energy ablation protocols.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: July 28, 2020
    Assignee: AtriCure, Inc.
    Inventor: David K. Swanson
  • Patent number: 10716936
    Abstract: An extravascular nerve cuff that is configured to hold a leadless, integral, implantable micro stimulator. The nerve cuff may include a cuff body having a pocket or pouch for removably receiving the implantable device within. The nerve cuff can be secured around the nerve such that the electrodes of the device are stably positioned relative to the nerve. Furthermore, the nerve cuff drives the majority of the current from the stimulation device into the nerve, while shielding surrounding tissues from unwanted stimulation.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: July 21, 2020
    Assignee: SetPoint Medical Corporation
    Inventors: Michael A. Faltys, Roy C. Martin, Steven E. Scott, Gerald E. Loeb
  • Patent number: 10716921
    Abstract: Disclosed are sheaths that comprise a first sheath member having a first passageway, a first length, and a first proximal end defined by a first valve apparatus configured to seal the first passageway, the first passageway having a first passageway diameter at a location in the first passageway; and a second sheath member coupled to the first sheath member, the second sheath member having a second passageway and a second length, the second passageway having a second passageway diameter at a location in the second passageway; where the first passageway and the second passageway are separate from each other and not co-axial, the first length is different from the second length, and the first and second sheath members are positioned beside each other for a portion of their first and second lengths.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: July 21, 2020
    Assignee: Endophys Holdings, LLC
    Inventor: Phillip D. Purdy
  • Patent number: 10702705
    Abstract: Systems and methods of the present disclosure are directed to systems and methods for treating cognitive dysfunction in a subject in need thereof. The system can include a light source and a speaker. A visual neural stimulation system provides, via the light source, visual stimulation having a first value of a first parameter. An auditory neural stimulation system provides, via the speaker, audio stimulation having a second value of the second parameter. A stimuli orchestration component selects, for a first time interval, one of the visual stimulation or the audio stimulation to vary based on a policy, selects, for the first time interval, the other of the visual stimulation or the audio stimulation to keep constant based on the policy, and provides causes the one of the visual neural stimulation system or the auditory neural stimulation system to vary the one of the visual stimulation or the audio stimulation.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: July 7, 2020
    Assignee: Cognito Therapeutics, Inc.
    Inventors: Zachary John Hambrecht Malchano, Martin Warren Williams
  • Patent number: 10675476
    Abstract: Implantable medical device systems and methods of use including an implantable first medical device having a lead with a transducer thereon and an implantable second medical device having a receiver for receiving energy emitted by the transducer. The lead may be placed in an internal thoracic vein, and other locations may be used as well. The implantable second medical device may be placed in or on the heart or an associated blood vessel.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: June 9, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: G. Shantanu Reddy, Kenneth Martin Stein, John Morgan
  • Patent number: 10675396
    Abstract: A method of detecting a suction condition during operation of a rotary blood pump with an inlet connected to a ventricle of the heart of a patient, an outlet connected to an artery of the patient, a rotor, and a control circuit configured maintain the rotor at a set rotational speed. The method includes measuring the rotational speed of the rotor at a plurality of times during each of a plurality of speed measurement intervals. A speed range is determined between a minimum measured speed and a maximum measured speed during each of the plurality of speed measurement intervals. At least one additional parameter relating to the operation of the blood pump is derived. A suction detection signal is generated if both at least one determined speed range is above a speed range limit and the at least one additional parameter is indicative of a suction condition.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: June 9, 2020
    Assignee: HeartWare, Inc.
    Inventors: Michael C. Brown, Neil Voskoboynikov
  • Patent number: 10667713
    Abstract: A method and system for R-R interval measurement of a user are disclosed. In a first aspect, the method comprises detecting an electrocardiogram (ECG) signal of the user. The method includes performing QRS peak detection on the ECG signal to obtain a low resolution peak and searching near the low resolution peak for a high resolution peak. The method includes calculating the R-R interval measurement based upon the high resolution peak. In a second aspect, a wireless sensor device comprises a processor and a memory device coupled to the processor, wherein the memory device includes an application that, when executed by the processor, causes the processor to carry out the steps of the method.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: June 2, 2020
    Assignee: Vital Connect, Inc.
    Inventors: Yun Yang, Ravi Narasimhan, Nima Ferdosi
  • Patent number: 10667742
    Abstract: Breast monitoring systems and methods are described including a flexible substrate fabricated to substantially conform to one or more breasts of a subject; dynamically bendable optical fibers associated with the flexible substrate; a light source operably coupled to the optical fibers; a photodetector positioned to detect light reception from the optical fibers; a reporting device; and a microcontroller including a microprocessor and circuitry, wherein the circuitry includes input circuitry configured to receive a first set of signals and at least one second set of signals from the photodetector; calculation circuitry configured to calculate a curvature delta value based on a comparison of the received first and at least one second set of signals, and calculate a breast volume delta value from the calculated curvature delta value; and reporting circuitry configured to transmit a signal to the reporting device based on the calculated breast volume delta value.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: June 2, 2020
    Assignee: Elwha LLC
    Inventors: Eleanor V. Goodall, Roderick A. Hyde, Wayne R. Kindsvogel, Elizabeth A. Sweeney, Charles Whitmer