Patents Examined by Deborah L Malamud
  • Patent number: 10493290
    Abstract: A medical system for providing a defibrillation therapy to a patient includes a cardiac monitoring device (CMD) configured to sense and record physiological data indicative of the patient's cardiac function. The CMD includes a communication component. The system also includes an external therapy device configured to deliver defibrillation therapy, and configured to be positioned external to and supported by the patient. The external therapy device includes an external therapy device communication component. The CMD communication component and the external therapy device communication component are configured to operatively couple the CMD and the external therapy device to one another, so as to work as a system to detect and treat fibrillation.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: December 3, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jacob M. Ludwig, Ron A. Balczewski, Todd W. Grotbeck, Keith R. Maile, Moira B. Sweeney
  • Patent number: 10493272
    Abstract: An interferential current system for performing a therapeutic procedure includes a controller, a stimulation power supply and at least one sensor providing patient derived sensor feedback to the controller. The system also includes at least two electrodes disposed on an epidermis of the patient and arranged to supply transcutaneous electrical impulses to a therapeutic target area when supplied power by the stimulation power supply. The electrodes supply impulses at two different frequencies, giving rise to at least one beat impulse having an interference frequency. The controller generates a patient specific model based at least in part on the sensor feedback, the patient specific model indicative of at least one of: electrode placement appropriate for the transcutaneous electrical impulses to reach the therapeutic target area, appropriate magnitudes of the at least two different frequencies, appropriate magnitude of the interference frequency, and appropriate sweep frequencies.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: December 3, 2019
    Assignee: Feinstein Patents, LLC
    Inventor: Peter A. Feinstein
  • Patent number: 10492846
    Abstract: A method and device for determining the transmurality and/or continuity of an isolation line formed by a plurality of point contact ablations. In one embodiment, a method for determining the size of a lesion (width, depth and/or volume) is disclosed, based on contact force of the ablation head with the target tissue, and an energization parameter that quantifies the energy delivered to the target tissue during the duration time of the lesion formation. In another embodiment, the sequential nature (sequence in time and space) of the ablation line formation is tracked and quantified in a quantity herein referred to as the “jump index,” and used in conjunction with the lesion size information to determine the probability of a gap later forming in the isolation line.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: December 3, 2019
    Assignee: St. Jude Medical International Holding S.á r.l.
    Inventors: Hendrik Lambert, Stuart J. Olstad, Olivier B. Fremont
  • Patent number: 10493278
    Abstract: A method of facilitating therapeutic neuromodulation of a heart of a patient includes positioning an electrode in a pulmonary artery, positioning a sensor in vasculature, delivering via a stimulation system first and second electrical signals of a series of electrical signals to the electrode. The second electrical signal differs from the first electrical signal by a magnitude of a first parameter of a plurality of parameters. The method includes determining, via the sensor, sensor data indicative of one or more heart activity properties in response to the delivery of the series of electrical signals, and delivering a therapeutic neuromodulation signal to the pulmonary artery using selected electrical parameters. The selected electrical parameters include a selected magnitude of the first parameter. The selected magnitude of the first parameter is based at least partially on the sensor data. The therapeutic neuromodulation signal increases heart contractility.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: December 3, 2019
    Assignee: Cardionomic, Inc.
    Inventors: Steven L. Waldhauser, Steven D. Goedeke
  • Patent number: 10463256
    Abstract: A method for determining sub-diffuse scattering parameters of a material includes illuminating the material with structured light and imaging remission by the material of the structured light. The method further includes determining, from captured remission images, sub-diffuse scattering parameters of the material. A structured-light imaging system for determining sub-diffuse scattering parameters of a material includes a structured-light illuminator, for illuminating the material with structured light of periodic spatial structure, and a camera for capturing images of the remission of the structured light by the material. The structured-light imaging system further includes an analysis module for processing the images to quantitatively determine the sub-diffuse scattering parameters. A software product includes machine-readable instructions for analyzing images of remission of structured light by a material to determine sub-diffuse scattering parameters of the material.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: November 5, 2019
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Stephen Chad Kanick, Brian William Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III, Venkataramanan Krishnaswamy
  • Patent number: 10456047
    Abstract: A system for monitoring hemodynamics of a subject is disclosed. The system comprises: a signal generating system configured for providing at least an output electric signal and transmitting the output signal to an organ of the subject. The system also comprises a demodulation system configured for receiving an input electrical signal sensed from the organ responsively to the output electric signal, and for modulating the input signal using the output signal to provide an in-phase component and a quadrature component of the input signal. The system also comprises a processing system configured for monitoring the hemodynamics based on the in-phase and the quadrature components.
    Type: Grant
    Filed: July 3, 2016
    Date of Patent: October 29, 2019
    Assignee: Cheetah Medical, Inc.
    Inventors: Baruch Levy, Eliezer Schusman, Omri Sarfati, Mordechai Dinur
  • Patent number: 10456049
    Abstract: An apparatus comprises plurality of sensors and a processor. Each sensor provides a sensor signal that includes physiological information and at least one sensor is implantable. The processor includes a physiological change event detection module that detects a physiological change event from a sensor signal and produces an indication of occurrence of one or more detected physiological change events, and a heart failure (HF) detection module. The HF detection module determines, using a first rule, whether the detected physiological change event indicative of a change in HF status of a subject, determines whether to override the first rule HF determination using a second rules, and declares whether the change in HF status occurred according to the first and second rules.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: October 29, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, Jeffrey E. Stahmann, Krzysztof Z. Siejko, Ramesh Wariar, Julie A. Thompson, John D. Hatlestad, Kenneth C. Beck
  • Patent number: 10448841
    Abstract: A system for monitoring hemodynamics of a subject is disclosed. The system comprises: a signal generating system configured for providing at least an output electric signal and transmitting the output signal to an organ of the subject. The system also comprises a demodulation system configured for receiving an input electrical signal sensed from the organ responsively to the output electric signal, and for modulating the input signal using the output signal to provide an in-phase component and a quadrature component of the input signal. The system also comprises a processing system configured for monitoring the hemodynamics based on the in-phase and the quadrature components.
    Type: Grant
    Filed: July 3, 2016
    Date of Patent: October 22, 2019
    Assignee: Cheetah Medical, Inc.
    Inventors: Baruch Levy, Eliezer Schusman, Omri Sarfati, Mordechai Dinur
  • Patent number: 10441803
    Abstract: A system for providing neurostimulation includes an external device (“external exciter”) and an implanted device. The external exciter includes an energy source which inductively powers the implanted device. Examples of such external exciters include devices having at least one of: ultrasonic transducers, Radio Frequency (RF) transmitters, and solar cells. The implanted device includes circuitry that limits its maximum energy output to a predetermined saturation threshold such that excess stimulation from the external exciter does not raise the output of the implanted device beyond the saturation threshold. The output signal of the external exciter is then pulse-width modulated in order to produce a desired amount of output stimulation from the implanted device to stimulate the bioelectrically excitable tissue at a desired level.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: October 15, 2019
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Bruce C. Towe, Daniel Gulick
  • Patent number: 10433735
    Abstract: A system for monitoring hemodynamics of a subject is disclosed. The system comprises: a signal generating system configured for providing at least an output electric signal and transmitting the output signal to an organ of the subject. The system also comprises a demodulation system configured for receiving an input electrical signal sensed from the organ responsively to the output electric signal, and for modulating the input signal using the output signal to provide an in-phase component and a quadrature component of the input signal. The system also comprises a processing system configured for monitoring the hemodynamics based on the in-phase and the quadrature components.
    Type: Grant
    Filed: July 3, 2016
    Date of Patent: October 8, 2019
    Assignee: Cheetah Medical, Inc.
    Inventors: Baruch Levy, Eliezer Schusman, Omri Sarfati, Mordechai Dinur
  • Patent number: 10420946
    Abstract: A medical device for treating cardiac arrhythmia includes a microprocessor. A MCU configures the medical device to operate in a modified DVI (R) mode in which: when receiving a signal indicating the sensing of an atrial event, the MCU sets a PANP interval and sends to a time control unit a signal; if a scheduled post-ventricular atrial escaping interval is to end at a time not within the PANP internal, the MCU sends respective signals to a pacing control/generation unit and the time control unit to dictate the pacing control/generation unit and control a second timing unit to use a PAVI as a next ventricular escape interval; and if the scheduled post-ventricular atrial escaping interval is to end within the PANP interval, the MCU sends a signal to the time control unit, controlling the second timing unit to use the PAVI as the next ventricular escape interval.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: September 24, 2019
    Assignee: SHANGHAI MICROPORT MEDICAL (GROUP) CO., LTD.
    Inventors: Jean Cheui Hsung, Guiling Li, Min Huang, Xinxin Chen
  • Patent number: 10406371
    Abstract: There is provided a method for controlling the movement of bile and/or gall stones in the biliary duct. The method comprises gently constricting (i.e., without substantially hampering the blood circulation in the tissue wall) at least one portion of the tissue wall to influence the movement of bile and/or gallstones in the biliary duct, and stimulating the constricted wall portion to cause contraction of the wall portion to further influence the movement of bile and/or gallstones in the biliary duct. The method can be used for restricting or stopping the movement of bile and/or gallstones in the biliary duct, or for actively moving the fluid in the biliary duct, with a low risk of injuring the biliary duct.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: September 10, 2019
    Inventor: Peter Forsell
  • Patent number: 10398356
    Abstract: There is provided a device which detects sleepiness of a human being based on the opening and closing motion of an eyelid, in which an occurrence of sleepiness of a subject is detectable with accuracy more sufficient than before even for a subject who keeps from blinking intentionally when sleepiness increases. The inventive sleepiness detecting device comprises an eyelid state detector, detecting an opened/closed state of an eyelid of a subject; a transition time interval detector, detecting sequentially a time interval between transitions between an opened state and a closed state of the eyelid; an eyelid characteristic amount computer, computing an eyelid opening/closing characteristic amount from time series data of the time intervals; a sleepiness judging device, judging that the subject feels sleepiness when the eyelid opening/closing characteristic value falls below a first threshold value or exceeds beyond a second threshold value higher than the first threshold value.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: September 3, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yoshiyuki Hatakeyama
  • Patent number: 10391323
    Abstract: An example of a method embodiment may include receiving a user programmable neural stimulation (NS) dose for an intermittent neural stimulation (INS) therapy, and delivering the INS therapy with the user programmable NS dose to an autonomic neural target of a patient. Delivering the INS therapy may include delivering NS bursts, and delivering the NS bursts may include delivering a number of NS pulses per cardiac cycle during a portion of the cardiac cycles and not delivering NS pulses during a remaining portion of the cardiac cycles. The method may further include sensing cardiac events within the cardiac cycles, and controlling delivery of the user programmable NS dose of INS therapy using the sensed cardiac events to time delivery of the number of NS pulses per cardiac cycle to provide the user programmable NS dose. The user programmable NS dose may determine the number of NS pulses per cardiac cycle.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: August 27, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Jason J. Hamann, Stephen B. Ruble, Juan Gabriel Hincapie Ordonez, Manfred Franke
  • Patent number: 10363415
    Abstract: A non-invasive electrical stimulation device shapes an elongated electric field of effect that can be oriented parallel to a long nerve, such as a vagus nerve in a patient's neck, producing a desired physiological response in the patient. The stimulator comprises a source of electrical power, at least one electrode and a continuous electrically conducting medium in which the electrode(s) are in contact. The stimulation device is configured to produce a peak pulse voltage that is sufficient to produce a physiologically effective electric field in the vicinity of a target nerve, but not to substantially stimulate other nerves and muscles that lie between the vicinity of the target nerve and patient's skin. Current is passed through the electrodes in bursts of preferably five sinusoidal pulses, wherein each pulse within a burst has a duration of preferably 200 microseconds, and bursts repeat at preferably at 15-50 bursts per second.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: July 30, 2019
    Assignee: Electrocore, Inc.
    Inventors: Bruce J. Simon, Joseph P. Errico, John T. Raffle
  • Patent number: 10362813
    Abstract: A band includes a tubular body defining a central passage, where the tubular body is configured to be worn on a user's body such that a portion of the user's body is received in the central passage, and a housing formed of a polymer material and connected to the tubular body. The housing defines a cavity and an access opening providing access to the cavity, and the housing is configured to removably receive an electronic module in the cavity through the access opening. The housing further includes a slot in communication with the cavity, with the slot configured to permit passage of moisture away from the housing. The sides of the tubular body may also define a slope that is from 0-0.75.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: July 30, 2019
    Assignee: NIKE, Inc.
    Inventors: Jamian R. Cobbett, Monica Judge, Summer Schneider, Ariana B. Manesh, Simon Quay, Bill Webb, Quinn Fitzgerald, Kevin C. Sze, Russ Watt
  • Patent number: 10350390
    Abstract: A system for conducting denervation of the neural plexus adjacent the renal artery, comprises a pre-shaped ablative element operatively coupled to an elongate deployment member configured to be navigated into the renal artery, the pre-shaped ablative element comprising one or more RF electrodes disposed in an arcuate pattern; and an energy source operatively coupled to the one or more RF electrodes and being configured to cause current to flow from the pre-shaped ablative element and cause localized heating sufficient to denervate nearby neural tissue.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: July 16, 2019
    Assignee: Auris Health, Inc.
    Inventors: Frederic H. Moll, Randall L. Schlesinger, Farzad Soleimani, Daniel T. Wallace
  • Patent number: 10335598
    Abstract: An electrical stimulation device configured to perform an electrical stimulation therapy on a patient includes a stimulation circuit, at least one electrode lead comprising one or more electrodes, a communication circuit and a controller. The controller is configured to execute a stimulation program received through the communication circuit. Electrical stimulation pulses are generated by the stimulation circuit and delivered to the at least one electrode lead in response to the execution of the stimulation program.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: July 2, 2019
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: David J. Yonce
  • Patent number: 10307611
    Abstract: Systems and methods of the present disclosure are directed to systems and methods for treating cognitive dysfunction in a subject in need thereof. The system can include a light source and a speaker. A visual neural stimulation system provides, via the light source, visual stimulation having a first value of a first parameter. An auditory neural stimulation system provides, via the speaker, audio stimulation having a second value of the second parameter. A stimuli orchestration component selects, for a first time interval, one of the visual stimulation or the audio stimulation to vary based on a policy, selects, for the first time interval, the other of the visual stimulation or the audio stimulation to keep constant based on the policy, and provides causes the one of the visual neural stimulation system or the auditory neural stimulation system to vary the one of the visual stimulation or the audio stimulation.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: June 4, 2019
    Assignee: COGNITO THERAPEUTICS, INC.
    Inventors: Zachary John Hambrecht Malchano, Martin Warren Williams
  • Patent number: 10292627
    Abstract: A method including obtaining a first electrocardiography [“ECG”] reading from a test subject when the test subject is believed to not suffer from blood volume loss and obtaining a second ECG reading from the test subject when the test subject is in an unknown condition regarding blood volume loss. The first ECG reading and the second ECG reading are obtained using the same electrode positions on the test subject and include sets of ECG signals which, based on experimental data, respond to small decrease in blood volume by a statistically significant strength decrease. If the second ECG reading exhibits a statistically significant strength decrease compared with the first ECG reading, an alert condition is raised, which indicates potential small decrease in blood volume. The method can be embodied as a stand-alone ECG apparatus or as an add-on unit to an ECG apparatus.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: May 21, 2019
    Inventor: Heikki Veli Juhani Riekkinen