Patents Examined by Delma R Forde
  • Patent number: 11735886
    Abstract: Multi-Channels coherent beam combining (CBC) using a mechanism for phase and/or polarization locking that uses a reference optical beam and an array of optical detectors each detector being configured and located to detect overall intensity of an optical interference signal caused by interfering of the reference beam and a beam of the respective channel, where the fast intensity per-channel detection allows simultaneous and quick phase/polarization locking of all channels for improving beam combining system performances.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: August 22, 2023
    Assignee: ELBIT SYSTEMS ELECTRO-OPTICS—ELOP LTD.
    Inventors: Zeev Schiffer, Andrey Nazarov, Daniel Levy
  • Patent number: 11728622
    Abstract: An optical apparatus comprises a semiconductor substrate and an optical waveguide emitter. The optical waveguide emitter comprises an input waveguide section extending from a facet of the semiconductor substrate, a turning waveguide section optically coupled with the input waveguide section, and an output waveguide section extending to the same facet and optically coupled with the turning waveguide section. One or more of the input waveguide section, the turning waveguide section, and the output waveguide section comprises an optically active region.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: August 15, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Dominic F. Siriani, Vipulkumar K. Patel, Matthew J. Traverso, Mark A. Webster
  • Patent number: 11688993
    Abstract: A method of producing a plurality of laser diodes includes providing a plurality of laser bars in a composite, wherein the laser bars each include a plurality of laser diode elements arranged side by side, and the laser diode elements include a common substrate and a semiconductor layer sequence arranged on the substrate, and a division of the composite at a longitudinal separation plane extending between two adjacent laser bars leads to formation of laser facets of the laser diodes to be produced, and structuring the composite at at least one longitudinal separation plane, wherein a structured region is produced in the substrate.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: June 27, 2023
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: John Brückner, Sven Gerhard
  • Patent number: 11670912
    Abstract: A photonic circuit with a hybrid III-V on silicon or silicon-germanium active section, that comprises an amplifying medium with a III-V heterostructure (1, QW, 2) and an optical wave guide. The wave guide comprises a coupling section (31) facing a central portion of the amplifying medium, a propagation section (34, 35) and a modal transition section (32, 33) arranged between the coupling section and the propagation section. In the modal transition section, the optical wave guide widens progressively from the propagation section towards the coupling section.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: June 6, 2023
    Assignee: COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Théo Verolet, Antonin Gallet
  • Patent number: 11664643
    Abstract: Gallium and nitrogen containing optical devices operable as laser diodes and methods of forming the same are disclosed. The devices include a gallium and nitrogen containing substrate member, which may be semipolar or non-polar. The devices include a chip formed from the gallium and nitrogen substrate member. The chip has a width and a length, a dimension of less than 150 microns characterizing the width of the chip. The devices have a cavity oriented substantially parallel to the length of the chip.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: May 30, 2023
    Assignee: KYOCERA SLD Laser, Inc.
    Inventors: James W. Raring, Hua Huang
  • Patent number: 11658463
    Abstract: A light-emitting element includes a mesa structure in which a first compound semiconductor layer of a first conductivity type, an active layer, and a second compound semiconductor layer of a second conductivity type are disposed in that order, wherein at least one of the first compound semiconductor layer and the second compound semiconductor layer has a current constriction region surrounded by an insulation region extending inward from a sidewall portion of the mesa structure; a wall structure disposed so as to surround the mesa structure; at least one bridge structure connecting the mesa structure and the wall structure, the wall structure and the bridge structure each having the same layer structure as the portion of the mesa structure in which the insulation region is provided; a first electrode; and a second electrode disposed on a top face of the wall structure.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: May 23, 2023
    Assignee: Sony Group Corporation
    Inventors: Tomoyuki Oki, Yuji Masui, Yoshinori Yamauchi, Rintaro Koda, Takahiro Arakida
  • Patent number: 11646542
    Abstract: A laser oscillator includes a housing, an optical fiber disposed in the housing and including a fused portion or a curved portion, an optical absorber positioned between the housing and the fused portion or the curved portion and configured to absorb leakage light from the optical fiber, a thermally conductive support column configured to support the optical absorber, and a cooling unit configured to cool the optical absorber via the thermally conductive support column.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: May 9, 2023
    Assignee: Fanuc Corporation
    Inventor: Tetsuya Chiba
  • Patent number: 11641089
    Abstract: Some embodiments may include a packaged laser diode assembly, comprising: a length of optical fiber having a core and a polymer buffer in direct contact with the core, the length of optical fiber having a first section and a second section, the first section of the length of optical fiber including a tip of an input end of the optical fiber, wherein the polymer buffer covers only the second section of the first and second sections; one or more laser diodes to generate laser light; means for directing a beam derived from the laser light into the input end of the length of optical fiber; a light stripper attached to the core in the first section of the length of optical fiber. Other embodiments may be disclosed and/or claimed.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: May 2, 2023
    Assignee: NLIGHT, INC.
    Inventors: Shuang Li, Jiamin Zhang, Manoj Kanskar, Chendong Bai
  • Patent number: 11621537
    Abstract: The present disclosure provides an ultrafast laser that outputs multiple wavelengths. The ultrafast laser includes a fundamental frequency ultrafast laser unit, an optical beam splitting and polarization controlling unit, a multiple frequency unit, and an optical beam combining unit. The fundamental frequency ultrafast laser generates a multiple frequency ultrafast laser by the multiple frequency unit, such as double frequency light, triple frequency light, etc., and the optical beam combining unit makes the fundamental frequency light and the double frequency light output in a light outlet, the controlling unit controls the wavelength of the laser of the light outlet by controlling the polarization state of the laser. The ultrafast laser of the present disclosure can realize fast switching output among the fundamental frequency light and multiple frequency light, and output of combined pulse fundamental frequency light and double frequency light.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: April 4, 2023
    Assignee: WUHAN YANGTZE SOTON LASER CO. LTD.
    Inventors: Si Zou, Fei He, Kangkang Chen, Guruo Xu
  • Patent number: 11611188
    Abstract: Described herein are isolated ring cavities that have refractive and heat-generating components physically separated and mechanically held by flexure mounts that are adapted to function in combination with the physically separated structure to moderate the thermal expansion effects of the heat generated by the refractive and other heat-generating elements (e.g., gain element) of the optical cavity. The flexure mounts may be configured as thinned portions of connective elements, reducing the effects of thermal expansion of the baseplate and allowing a thermal isolation from the baseplate. Multiple flexure mounts may be arranged to minimize further the effects of thermal expansion of the baseplate.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: March 21, 2023
    Assignee: Arete Associates
    Inventor: Micah Boyd
  • Patent number: 11605933
    Abstract: A laser structure may include a substrate, an active region arranged on the substrate, and a waveguide arranged on the active region. The waveguide may include a first surface and a second surface that join to form a first angle relative to the active region. A material may be deposited on the first surface and the second surface of the waveguide.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: March 14, 2023
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventors: Ali Badar Alamin Dow, Jason Daniel Bowker, Malcolm R. Green
  • Patent number: 11600963
    Abstract: Chip technology for fabricating ultra-low-noise, high-stability optical devices for use in an optical atomic clock system. The proposed chip technology uses diamond material to form stabilized lasers, frequency references, and passive laser cavity structures. By utilizing the exceptional thermal conductivity of diamond and other optical and dielectric properties, a specific temperature range of operation is proposed that allows significant reduction of the total energy required to generate and maintain an ultra-stable laser. In each configuration, the diamond-based chip is cooled by a cryogenic cooler containing liquid nitrogen.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: March 7, 2023
    Assignee: The Boeing Company
    Inventors: Anguel Nikolov, John R. Lowell, David K. Mefford, John Dalton Williams
  • Patent number: 11594860
    Abstract: An array layout of VCSELs is intentionally mis-aligned with respect to the xy-plane of the device structure as defined by the crystallographic axes of the semiconductor material. The mis-alignment may take the form of skewing the emitter array with respect to the xy-plane, or rotating the emitter array. In either case, the layout pattern retains the desired, row/column structure (necessary for dicing the structure into one-dimensional arrays) while reducing the probability that an extended defect along a crystallographic plane will impact a large number of individual emitters.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: February 28, 2023
    Assignee: II-VI Delaware, Inc.
    Inventors: André Bisig, Bonifatius Wilhelmus Tilma, Norbert Lichtenstein
  • Patent number: 11581704
    Abstract: Narrow-optical linewidth laser generation devices and methods for generating a narrow-optical linewidth laser beam are provided. One narrow-optical linewidth laser generation devie includes a single-wavelength mirror or multiwavelength mirror (for comb lasers) formed from one or more optical ring resonators coupled with an optical splitter. The optical splitter may in turn be coupled with a quantum dot optical amplifier (QDOA), itself coupled with a phase-tuner. The phase tuner may be further coupled with a broadband mirror. The narrow-optical linewidth laser beam is generated by using a long laser cavity and additionally by using an integrated optical feedback.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: February 14, 2023
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Geza Kurczveil, Di Liang, Jared Hulme, Antoine Deseos, Raymond G. Beausoleil
  • Patent number: 11579261
    Abstract: A transmitter unit for emitting radiation into the surrounding area, including at least one semiconductor laser, which has at least one first emitter possessing a first section and a second section; and at least one control unit for controlling the semiconductor laser. The control unit is configured to apply a first supply variable to the first section of the at least one emitter, and to apply a second supply variable differing from the first supply variable, to the second section of the at least one emitter.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: February 14, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Martin Kastner, Hans-Jochen Schwarz, Stefan Spiessberger
  • Patent number: 11552440
    Abstract: A laser is disclosed having a housing formed of a block of glass-ceramic. The block is machined (or otherwise formed) to define one or more channels that act as a waveguide in two dimensions for light within the laser resonator. The channels extend between cavities also formed within the block which retain optical components of the laser, e.g. one or more of the gain medium, cavity mirrors, intermediate reflectors etc. The positioning, shape and size of each cavity is bespoke for the optical component it holds in order that each optical component is retained in optical alignment rigidly against the sides of the cavity.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: January 10, 2023
    Assignee: LEONARDO UK LTD
    Inventors: Robert Lamb, Ian Elder
  • Patent number: 11552452
    Abstract: An optoelectronic device grown on a miscut of GaN, wherein the miscut comprises a semi-polar GaN crystal plane (of the GaN) miscut x degrees from an m-plane of the GaN and in a c-direction of the GaN, where ?15<x<?1 and 1<x<15 degrees.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: January 10, 2023
    Assignee: The Regents of the University of California
    Inventors: Po Shan Hsu, Kathryn M. Kelchner, Robert M. Farrell, Daniel A. Haeger, Hiroaki Ohta, Anurag Tyagi, Shuji Nakamura, Steven P. DenBaars, James S. Speck
  • Patent number: 11552442
    Abstract: A laser device (100), being configured for generating laser pulses by Ken lens based mode locking, comprises a laser resonator (10) with a plurality of resonator mirrors (11.1, 11.2, 11.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: January 10, 2023
    Assignees: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V., LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
    Inventors: Oleg Pronin, Ferenc Krausz, Sebastian Groebmeyer, Jonathan Brons
  • Patent number: 11552446
    Abstract: A cooling device (1) for cooling an electrical component (4), in particular a laser diode, including a base body (2) with at least one outer face (20) and at least one integrated cooling channel (5), in particular a micro-cooling channel, a connecting surface (21) on the outer face (20) of the base body (2) for connecting the electrical component (4) to the base body (2) and a first stabilising layer (11), wherein the first stabilising layer (11) and the connecting surface (21) are arranged at least partially one above the other along a primary direction (P), and wherein the first stabilising layer (11) is offset relative to the outer face (20) towards the interior of the base body (2) by a distance (A) along a direction parallel to the primary direction (P).
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: January 10, 2023
    Assignee: ROGERS GERMANY GMBH
    Inventors: Nico Kuhn, Manfred Götz, Andreas Meyer, Vitalij Gil, Johannes Wiesend
  • Patent number: 11532924
    Abstract: A distributed feedback (DFB) laser array includes a substrate, a semiconductor stacked structure, a first electrode layer, and a second electrode layer. The semiconductor stacked structure is formed above a surface of the substrate and includes two light-emitting modules and a tunnel junction. Each light-emitting module of the two light-emitting modules includes an active layer, a first cladding layer, and a second cladding layer. The active layer is installed between the first cladding layer and the second cladding layer, and the active layer has multiple lasing spots along a first direction, wherein the multiple lasing spots are used for generating multiple lasers. The tunnel junction is installed between the two light-emitting modules. The first electrode layer is formed above the semiconductor stacked structure. The second electrode layer is formed above another surface of the substrate.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: December 20, 2022
    Assignee: National Taiwan University
    Inventors: Chao-Hsin Wu, Chieh Lo