Patents Examined by Derek Mueller
  • Patent number: 9005432
    Abstract: A process for upgrading an oil stream by mixing the oil stream with a water stream and subjecting it to conditions that are at or above the supercritical temperature and pressure of water. The process further includes cooling and a subsequent alkaline extraction step. The resulting thiols and hydrogen sulfide gas can be isolated from the product stream, resulting in an upgraded oil stream that is a higher value oil having low sulfur, low nitrogen, and low metallic impurities as compared to the oil stream.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: April 14, 2015
    Assignee: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk Choi, Mohammad Fuad Aljishi, Ashok K. Punetha, Mohammed R. Al-Dossary, Joo-Hyeong Lee, Bader M. Al-Otaibi
  • Patent number: 8999144
    Abstract: An apparatus and process is disclosed for hydroprocessing hydrocarbon feed in a hydroprocessing unit and hydrotreating a second hydrocarbon. The hydrotreating effluent is mixed with hydroprocessing effluent and together fractionated.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: April 7, 2015
    Assignee: UOP LLC
    Inventor: Andrew P. Wieber
  • Patent number: 8999148
    Abstract: Systems and methods to improve the removal and capture of oil from wastewater streams. The water and oil mixture (wastewater) is diluted and treated to provide better solubilization of hydrophilic and hydrophobic fractions using captive water and a diluent. Two additives are added to demulsify and disperse polymeric and non-hydrocarbon insolubles and layer separation is performed on the treated wastewater to segregate oil and water.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: April 7, 2015
    Assignee: Enviromental Management Alternatives, Inc.
    Inventor: Robert G. Schory, III
  • Patent number: 8992771
    Abstract: Disclosed herein are methods for isolating heavy saturated hydrocarbons from a subsurface shale formation comprising kerogen and an extractible organics component. These methods can be used to provide a bright stock product. The process comprises extracting an extractible organics component from subsurface shale formations comprising kerogen and the extractible organics component in an inorganic matrix and isolating a heavy hydrocarbon fraction comprising saturated beta-carotene. The methods utilize a hydrocarbon solvent to at least partially solubilize the extractible organics component. Among other factors, these processes are based on the discovery that the extractible organics is composed of a heavy hydrocarbon component containing saturated beta-carotene. The saturated beta-carotene product is a valuable commercial product. The presently disclosed processes are more environmentally benign, more economical, and more efficient in producing commercial products and in providing access to kerogen.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: March 31, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Marcus Oliver Wigand, Saleh Elomari, Robert Martin Carlson
  • Patent number: 8992769
    Abstract: Trace amount levels of heavy metals such as mercury in crude oil are reduced by contacting the crude oil with a sufficient amount of a reducing agent to convert at least a portion of the non-volatile mercury into a volatile form of mercury, which can be subsequently removed by any of stripping, scrubbing, adsorption, and combinations thereof. In one embodiment, at least 50% of the mercury is removed. In another embodiment, the removal rate is at least 99%. In one embodiment, the reducing agent is selected from sulfur compounds containing at least one sulfur atom having an oxidation state less than +6; ferrous compounds; stannous compounds; oxalates; cuprous compounds; organic acids which decompose to form CO2 and/or H2 upon heating; hydroxylamine compounds; hydrazine compounds; sodium borohydride; diisobutylaluminium hydride; thiourea; transition metal halides; and mixtures thereof.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: March 31, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis John O'Rear, Russell Evan Cooper, Sujin Yean, Stephen Harold Roby, Hosna Mogaddedi, Manuel Eduardo Quintana, Jerry Max Rovner
  • Patent number: 8980080
    Abstract: A system and process for integrated desulfurizing, desalting and deasphalting of hydrocarbon feedstocks is provided. A hydrocarbon feedstock, a water soluble oxidant, and a water soluble catalyst can be introduced in a oxidation zone and retained for a period of time sufficient to achieve the desired degree of desulfurization, or introduced directly into the desalting zone along with wash water. Catalyst and dissolved salt are discharged along with the wastewater effluent from the desalting zone. A hydrocarbon stream including converted hydrocarbons and oxidation by-products is passed to a deasphalting zone. In the deasphalting zone, phase separation occurs, whereby a light phase including desulfurized hydrocarbons are produced, and a heavy phase including asphaltenes and oxidation by-products are discharged, e.g., passed to an asphalt pool.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: March 17, 2015
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Abdennour Bourane
  • Patent number: 8974660
    Abstract: There is provided a method for upgrading hydrocarbon compounds, in which hydrocarbon compounds synthesized in a Fisher-Tropsch synthesis reaction are fractionally distillated, and the fractionally distillated hydrocarbon compounds are hydrotreated to produce liquid fuel products. The method includes fractionally distilling heavy hydrocarbon compounds synthesized in the Fisher-Tropsch synthesis reaction as a liquid into a first middle distillate and a wax fraction, and fractionally distilling light hydrocarbon compounds synthesized in the Fisher-Tropsch synthesis reaction as a gas into a second middle distillate and a light gas fraction.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: March 10, 2015
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Yuichi Tanaka, Yasumasa Morita, Kenichi Kawazuishi
  • Patent number: 8968557
    Abstract: The present invention provides a method of converting coal to a petroleum product. The method includes the steps of mixing the coal and water to form a mixture, and heating the mixture to approximately 500 degrees Fahrenheit. The method further includes separating the mixture in a first separator into a liquid stream of a water bearing minerals and a solid stream of coal, and transferring the coal from the first separator to a coking reactor wherein the temperature is raised to approximately 1,000 degrees Fahrenheit to drive off lighter fractions of the coal as a gas. The method also includes transferring the gas to a fourth separator to separate water and liquid petroleum product from the gas.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: March 3, 2015
    Inventor: Paul T. Baskis
  • Patent number: 8968552
    Abstract: An intermediate hydrogen separation and purification system is integrated with a hydrotreating and an aromatic saturation process for the production of relatively lower molecular weight products from a relatively heavy feedstock including sulfur-containing and aromatic-containing hydrocarbon compounds. The integrated process allows the processing of heavy hydrocarbon feedstock having high aromatic and high sulfur contents in a single-stage configuration and the using of noble metal catalyst in the aromatic saturation zone. The integrated process increases the overall catalytic activity and hydrogenation capability to produce superior distillate products.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: March 3, 2015
    Assignee: Saudi Arabian Oil Company
    Inventors: Vinod Ramaseshan, Ali Hasan Al-Abdulal, Yuv Raj Mehra
  • Patent number: 8968551
    Abstract: Methods are provided for forming an asphalt fraction corresponding to a blend of asphalts, the asphalt fraction having at least one property that is unexpectedly better than the expected property value based on the individual asphalts used in the blend. The unexpectedly beneficial blends of asphalts are formed in part by including an effective amount of a Napo crude oil or crude fraction in the feed used to form the asphalt fraction. For some asphalt blends, including an effective amount of a Napo crude in the feed can allow for production of an asphalt with a low temperature performance grade that is lower than the predicted value by at least 0.5° C., such as at least 0.75° C. or at least 1.0° C.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 3, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Lyle Edwin Moran, Mary Josephine Gale
  • Patent number: 8945373
    Abstract: According to the present invention, organic material is converted to biogas through anaerobic digestion and the biogas is purified to yield a combustible fluid feedstock comprising methane. A fuel production facility utilizes or arranges to utilize combustible fluid feedstock to generate renewable hydrogen that is used to hydrogenate crude oil derived hydrocarbons in a process to make liquid transportation or heating fuel. The renewable hydrogen is added to a reactor operated so as to simultaneously desulfurize and hydrogenate crude oil derived hydrocarbons.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: February 3, 2015
    Assignee: Iogen Corporation
    Inventor: Brian Foody
  • Patent number: 8936716
    Abstract: A process is disclosed for recovering hydroprocessing effluent from a hydroprocessing unit utilizing a hot stripper and a cold stripper. A net overhead stream from the hot stripper is forwarded to the cold stripper for further stripping. The invention is particularly suitable for hydrotreating residue feed streams. The hot stripped stream may be subjected to fluid catalytic cracking. The apparatus and process eliminates the need for a fired heater in the product recovery unit.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: January 20, 2015
    Assignee: UOP LLC
    Inventors: Richard K. Hoehn, Vedula K. Murty
  • Patent number: 8932453
    Abstract: This invention relates to a hydroprocessing process with improved catalyst activity when hydroprocessing petroleum based feedstock or an oxygen containing feedstock. This invention also relates to a hydrotreating process with improved hydrodesulfurization (HDS) activity of a hydrotreating catalyst such as Co/Mo by co-feeding carbon monoxide or its precursors. Such inventive process confirms that adding a small amount of CO to H2 in a hydrotreater for a few days leads to an increase in product sulfur due to the inhibition of CO on the hydrotreating catalyst such as Co/Mo. However, it has been unexpectedly found that after the CO was removed from the hydrogen stream, product sulfur levels decreased to values below they were before CO addition which means the activity of the hydrotreating catalyst increased after the CO treatment.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: January 13, 2015
    Assignee: Phillips 66 Company
    Inventors: Jianhua Yao, Dhananjay B. Ghonasgi, Xiaochun Xu, Larry D. Swinney
  • Patent number: 8932454
    Abstract: This invention relates to the composition, method of making and use of a hydrocracking catalyst that is comprised of a new Y zeolite which exhibits an exceptionally low small mesoporous peak around the 40 ? (angstrom) range as determined by nitrogen adsorption measurements. The hydrocracking catalysts of invention exhibit improved distillate yield and selectivity as well as improved conversions at lower temperatures than conventional hydrocracking catalysts containing Y zeolites. The hydrocracking catalysts herein are particularly useful in the hydrocracking processes as disclosed herein, particularly for conversion of heavy hydrocarbon feedstocks such as gas oils and vacuum tower bottoms and an associated maximization and/or improved selectivity of the distillate yield obtained from such hydrocracking processes.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: January 13, 2015
    Assignee: ExxonMobile Research and Engineering Co.
    Inventors: Jianxin Jason Wu, Ajit B. Dandekar, Christopher G. Oliveri
  • Patent number: 8932457
    Abstract: A catalytic conversion process uses a catalytic cracking catalyst having a relatively homogeneous activity containing mainly large pore zeolites in a catalytic conversion reactor. The reaction temperature, residence time of oil vapors and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from about 12 to about 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feed stock oil and containing a diesel. The reaction temperature ranges from about 420° C. to about 550° C. The residence time of oil vapors ranges from about 0.1 to about 5 seconds. The weight ratio of the catalytic cracking catalyst/feedstock is about 1-about 10.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: January 13, 2015
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Youhao Xu, Jianhong Gong, Congli Cheng, Shouye Cui, Zhihai Hu, Yun Chen
  • Patent number: 8932451
    Abstract: Methods are provided for processing crude oil feeds with reduced or minimized energy usage, reduced or minimized numbers of processing steps, improved allocation of hydrogen, and reduced or minimized formation of low value products. The methods reduce or minimize the use of vacuum distillation, and in many aspects reduce or minimize the use of both atmospheric and vacuum distillation. The methods also reduce or minimize the use of coking and fluid catalytic cracking processes.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: January 13, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ramon A. Strauss, Stephen Harold Brown, Donald E. Stratton, Stefan Maria Willy Ceulemans
  • Patent number: 8926825
    Abstract: Methods for removing sulfur from hydrocarbon streams using the sequential application of hydrodesulfurization, fractionation and oxidation. The hydrodesulfurization step is operative to remove easily-hydrogenated sulfur species, such as sulfides, disulfides and mercaptans. The resultant stream is then fractionated at a select temperature range to generate a sub-stream that is sulfur-rich with the sulfur species resistant to removal by hydrodesulfurization. The sub-stream is then isolated and subjected to an oxidative process operative to oxidize the sulfur species to sulfones or sulfoxides, which may then be removed by a variety of conventional methods, such as absorption. Alternatively, the methods may comprise using the sequential application of fractionation to generate a sulfur-rich sub-stream followed by oxidation and subsequent removal of the sulfur species present in the sub-fraction. The latter methods are ideally suited for transmix applications.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: January 6, 2015
    Inventor: Mark Cullen
  • Patent number: 8926833
    Abstract: A continuous process for upgrading a heavy hydrocarbon includes the steps of: obtaining a heavy hydrocarbon; heating the heavy hydrocarbon; contacting the heavy hydrocarbon with a solvent at upgrading conditions so as to produce a first product comprising a mixture of upgraded hydrocarbon and solvent and a second product comprising asphaltene waste and water; continuously feeding the first product and the second product to a first separator; heating the first product; and continuously feeding the first product to a second separator to separate the upgraded hydrocarbon from the solvent. A system is also provided.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: January 6, 2015
    Assignee: Intevep, S.A.
    Inventors: Manuel Chirinos, Galanda Morfes, Mariángel Alvarez, Félix Silva
  • Patent number: 8911613
    Abstract: Disclosed is a method of simultaneously manufacturing high quality naphthenic base oil and heavy base oil using a single catalyst system, by subjecting an oil fraction (slurry oil or light cycle oil) produced by fluid catalytic cracking and an oil fraction (deasphalted oil) produced by solvent deasphalting to hydrotreating, catalytic dewaxing and hydrofinishing of the single catalyst system, thereby obtaining not only products having low viscosity but also heavy base oil products (150BS) having high viscosity which was impossible to obtain using a conventional catalytic reaction process, and also thereby producing base oil products having different properties using the single catalyst system, thus generating economic benefits and exhibiting superior efficiency.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: December 16, 2014
    Assignee: SK Innovation Co., Ltd.
    Inventors: Kyung Seok Noh, Jae Wook Ryu, Do Hyoun Kim, Gyung Rok Kim, Seung Woo Lee, Do Woan Kim, Sun Choi, Seung Hoon Oh, Byung Won Yoon, Bum Suk Chun
  • Patent number: 8911694
    Abstract: Two-stage hydroprocessing uses a common dividing wall fractionator. Hydroprocessed effluents from both stages of hydroprocessing are fed to opposite sides of the dividing wall.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: John A. Petri, Vedula K. Murty, Peter Kokayeff