Patents Examined by Derek Mueller
  • Patent number: 8906228
    Abstract: Trace amount levels of heavy metals such as mercury in crude oil are reduced by contacting the crude oil with an oxidizing agent and then with a reducing agent. In one embodiment, the oxidizing agent is selected from the group of hydroperoxides, organic peroxides, inorganic peracids and salts thereof, organic peracids and salts thereof, halogens such as iodine (I2), bromine (Br2), and ozone. The treatment converts non-volatile mercury in the crude oil into a volatile form for subsequent mercury removal by any of stripping, scrubbing, adsorption, and combinations thereof. In one embodiment, at least 50% of the mercury is removed. In another embodiment, the removal rate is at least 99%.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: December 9, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis O'Rear, Russell Cooper, Sujin Yean
  • Patent number: 8894844
    Abstract: The invention includes a hydrotreating method for increased CO content comprising: contacting an olefinic naphtha feedstream with a hydrogen-containing treat gas stream and a hydrotreating catalyst in a reactor under hydrotreating conditions sufficient to at least partially hydrodesulfurize and/or hydrodenitrogenate the feedstream, wherein the feedstream and the hydrogen-containing treat gas stream collectively have greater than 10 vppm CO content and/or wherein the reactor inlet sees an average CO concentration of greater than 10 vppm, wherein the hydrotreating catalyst comprises a catalyst having cobalt and molybdenum disposed on a silica-based support, and wherein the hydrotreating conditions are selected such that the catalyst has a relative HDS activity at least 10% greater than an identical catalyst under identical conditions except for a collective CO content of the feedstream and/or hydrogen-containing treat gas being <10 vppm and/or a reactor inlet CO content <10 vppm.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: November 25, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: April D. Ross, Thomas R. Halbert, William J. Novak, John P. Greeley
  • Patent number: 8894842
    Abstract: The present invention concerns an optimized reforming catalyst comprising at least platinum, at least one promoter metal selected from the group formed by rhenium and iridium, at least one halogen, and at least one alumina support with a low sulphur and phosphorus content.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: November 25, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Sylvie Lacombe, Malika Boualleg, Eric Sanchez
  • Patent number: 8894845
    Abstract: Hydrocarbon feedstreams are desulfurized using an alkali metal reagent, optionally in the presence of hydrogen. Improved control over reaction conditions can be achieved in part by controlling the particle size of the alkali metal salt and by using multiple desulfurization reactors. The processes herein allow a simple and effective method for removing the majority of coke formed in the alkali metal reagent reactions with the hydrocarbon feedstreams. This makes it cost effective to run such processes at higher severities (which result in higher coke production) thereby resulting in increased amounts of valuable converted hydrocarbon product yields. The process improvements herein may also be used to increase total throughput through a unit due to the ability to effectively manage higher coke content in the reaction products.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: November 25, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Walter David Vann, Daniel Paul Leta, Jonathan Martin McConnachie, Richard Alan Demmin, Douglas Wayne Hissong, William C. Baird, Jr., Roby Bearden, Jr., James Ronald Bielenberg, Howard Freund, Chris Aaron Wright, Michael Francis Raterman, James Ronald Rigby, Brandon Thomas Stone
  • Patent number: 8894840
    Abstract: A process is disclosed for catalytically converting two feed streams. The feed to a first catalytic reactor may be contacted with product from a second catalytic reactor to effect heat exchange between the two streams and to transfer catalyst from the product stream to the feed stream. The feed to the second catalytic reactor may be a portion of the product from the first catalytic reactor.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: November 25, 2014
    Assignee: UOP LLC
    Inventors: Laura E. Leonard, Jibreel A. Qafisheh, Robert L. Mehlberg
  • Patent number: 8882993
    Abstract: This invention relates to stabilized aggregates of small primary crystallites of zeolite Y that are clustered into larger secondary particles. At least 80% of the secondary particles may comprise at least 5 primary crystallites. The size of the primary crystallites may be at most about 0.5 micron, or at most about 0.3 micron, and the size of the secondary particles may be at least about 0.8 micron, or at least about 1.0 ?m. The silica to alumina ratio of the resulting stabilized aggregated Y zeolite may be 4:1 or more.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: November 11, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Wenyih Frank Lai, Robert E. Kay, Jason Wu, Kun Wang, Robert C. Lemon
  • Patent number: 8877039
    Abstract: One exemplary embodiment can be a process for hydrocarbon conversion. The process can include providing a feed to a slurry hydrocracking zone, obtaining a hydrocarbon stream including one or more C16-C45 hydrocarbons from the at least one separator, providing another feed to a hydrocracking zone, and providing hydrogen from a three-stage compressor to the slurry hydrocracking zone and the hydrocracking zone. Moreover, the slurry hydrocracking zone may include a slurry hydrocracking reactor and at least one separator.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: November 4, 2014
    Assignee: UOP LLC
    Inventors: Mark Van Wees, Robert Haizmann
  • Patent number: 8864979
    Abstract: One exemplary embodiment can be a process for fluid catalytic cracking. The process can include sending a first catalyst from a first riser reactor and a second catalyst from a second riser reactor to a regeneration vessel having a first stage and a second stage. The first catalyst may be sent to the first stage and the second catalyst may be sent to the second stage of the regeneration vessel. Generally, the first stage is positioned above the second stage.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: October 21, 2014
    Assignee: UOP LLC
    Inventor: Paolo Palmas
  • Patent number: 8864980
    Abstract: A process for hydrotreating a first aromatics- and sulfur-containing hydrocarbon feed using a fresh supported CoMo catalyst, includes treating the fresh catalyst under first hydrotreating conditions with a second hydrocarbon feed having a lower aromatics content than the first feed.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: October 21, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Iulian Nistor, John Zengel, Sabato Miseo, Roman Krycak, Teh C. Ho
  • Patent number: 8864978
    Abstract: Provided is a process for the supercritical upgrading of petroleum feedstock, wherein the process includes the use of a start-up agent, wherein the use of the start-up agent facilitates mixing of the petroleum feedstock and water, thereby reducing or eliminating the production of coke, coke precursor, and sludge.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: October 21, 2014
    Assignee: Saudi Arabian Oil Company
    Inventor: Ki-Hyouk Choi
  • Patent number: 8858785
    Abstract: A device for processing a hydrocarbon resource may include a hydrocarbon processing container configured to receive the hydrocarbon resource therein and having a pair of opposing ends with an enlarged width medial portion therebetween. The device may also include a radio frequency (RF) source, and a spirally wound electrical conductor surrounding the hydrocarbon processing container and coupled to the RF source. The spirally wound electrical conductor may be configured to generate magnetic fields within the hydrocarbon processing container that are parallel with an axis thereof.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: October 14, 2014
    Assignee: Harris Corporation
    Inventor: Francis Eugene Parsche
  • Patent number: 8845885
    Abstract: A method of removing sulfur from sour oil by subjecting sour oil having a first sulfur content to high shear in the presence of at least one desulfurizing agent to produce a high shear treated stream, wherein the at least one desulfurizing agent is selected from the group consisting of bases and inorganic salts, and separating both a sulfur-rich product and a sweetened oil product from the high shear-treated stream, wherein the sulfur-rich product comprises elemental sulfur and wherein the sweetened oil product has a second sulfur content that is less than the first sulfur content. A system for reducing the sulfur content of sour oil via at least one high shear device comprising at least one rotor and at least one complementarily-shaped stator, and at least one separation device configured to separate a sulfur-rich product and sweetened oil from the high shear-treated stream.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: September 30, 2014
    Assignee: H R D Corporation
    Inventors: Abbas Hassan, Aziz Hassan, Rayford G. Anthony, Gregory G. Borsinger
  • Patent number: 8845886
    Abstract: This invention relates to a process for separating a hydrocarbon stream via a filtration process to produce an upgraded permeate stream with decreased Conradson Carbon Residue (“CCR”) content. The invention involves the modification of a porous ceramic filter by functionalizing the surface of the ceramic filter with an multi-ring aromatic-diimide polymer. Preferably, the multi-ring aromatic-diimide polymer is comprised of a multi-ring aromatic monomer component. The functionalized filters of the present invention can be used in a process to selectively separate components of a hydrocarbon stream to produce an improved permeate (or “filtrate”) product stream with a lower CCR content and improved processing capabilities.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: September 30, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: David C. Calabro, Dennis G. Peiffer, Benjamin A. McCool, Stanley E. Jakubowicz
  • Patent number: 8840780
    Abstract: A device for processing a hydrocarbon resource may include a hydrocarbon processing container configured to receive the hydrocarbon resource therein and having a pair of opposing ends with an enlarged width medial portion therebetween. The device may also include a radio frequency (RF) source, and a first spirally wound electrical conductor surrounding the hydrocarbon processing container and coupled to the RF source. The device may further include a second spirally wound electrical conductor carried within the hydrocarbon processing container. The first spirally wound electrical conductor may be configured to generate magnetic fields with the hydrocarbon processing container that are parallel with an axis thereof.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: September 23, 2014
    Assignee: Harris Corporation
    Inventor: Francis Eugene Parsche
  • Patent number: 8795513
    Abstract: Provided is a catalyst for hydrocracking of heavy oil which is excellent in both functions of cracking activity and desulfurization activity with respect to heavy oil by striking a balance between the cracking activity and desulfurization activity and which includes a support including a crystalline aluminosilicate and a porous inorganic oxide excluding the crystalline aluminosilicate, with an active metal being supported on the support, in which (a) the support includes the crystalline aluminosilicate in an amount of 45% by mass or greater and smaller than 60% by mass and the porous inorganic oxide excluding the crystalline aluminosilicate in an amount of greater than 40% by mass and 55% by mass or smaller, based on the sum of an amount of the crystalline aluminosilicate and an amount of the porous inorganic oxide excluding the crystalline aluminosilicate, (b) the active metal is at least one kind of metal selected from metals belonging to Groups 6, 8, 9, and 10 of the Periodic Table, and (c) the catalyst fo
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: August 5, 2014
    Assignee: JGC Catalysts and Chemicals Ltd.
    Inventors: Kazuhiro Inamura, Akira Iino, Nobuyuki Takahashi, Yoji Sunagawa, Mitsunori Watabe, Yuichi Yamahata, Shinya Eura, Yuji Shirahama
  • Patent number: 8790508
    Abstract: A system and process are provided for integrated deasphalting and desulfurization of hydrocarbon feedstock in which the hydrocarbon feedstock, an oxidant, and an oxidation catalyst are mixed prior to passage into a primary settler of a solvent deasphalting unit. Oxidation products, including oxidized organosulfur compounds, are discharged with the asphalt phase.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: July 29, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Abdennour Bourane
  • Patent number: 8784646
    Abstract: For conversion of crude oil or a heavy hydrocarbon fraction having an initial boiling point of at least 300° C., conducting a catalytic hydroconversion in a three-phase reactor operating in a boiling bed with an upward flow of liquid and gas, separating resultant effluent into a light liquid fraction boiling at less than 300° C. and a heavy liquid fraction boiling above 300° C., deasphalting the heavy liquid fraction to obtain a deasphalted hydrocarbon fraction and residual asphalt, and recycling at least one portion of the deasphalted hydrocarbon fraction upstream of the hydroconversion stage.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 22, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Eric Sanchez, Jan Verstraete
  • Patent number: 8778173
    Abstract: The present invention relates to a process for desulfurizing heavy oil feedstreams with alkali metal compounds and improving the compatibility of the to stream components in either the feed stream, an intermediate product stream, and/or the reaction product stream in the desulfurization process. The present invention utilizes a high stability aromatic-containing stream that is preferably added to the heavy oil prior to reaction with the alkali metal compounds. The resulting stream resists precipitation of reaction solids in the desulfurization reactors. Even more preferably, the desulfurization system employs at least two desulfurization reactors in series flow wherein the high stability aromatic-containing stream is contacted with the reaction product from the first reactor prior to the second reactor, wherein the first reactor can be operated at a higher severity than without the use of the high stability aromatic-containing component stream.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: July 15, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael F. Raterman, Daniel P. Leta, Walter D. Vann, Roby Bearden, Jr.
  • Patent number: 8778169
    Abstract: Conversion of a heavy hydrocarbon fraction that is obtained either from a crude oil or from the distillation of a crude oil and that has an initial boiling point of at least 300° C. by hydroconversion of at least one portion of heavy hydrocarbon fraction in the presence of hydrogen in at least one three-phase reactor containing at least one hydroconversion catalyst, separation of the effluent to obtain a light liquid fraction that boils at a temperature that is less than 300° C. and a heavy liquid fraction that boils at a temperature that is greater than 300° C., and a deasphalting of at least one portion of the heavy liquid fraction that boils at a temperature that is greater than 300° C.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 15, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Eric Sanchez, Jan Verstraete
  • Patent number: 8778824
    Abstract: This invention relates to aggregates of small primary crystallites of zeolite Y that are clustered into larger secondary particles. At least 80% of the secondary particles may comprise at least 5 primary crystallites. The size of the primary crystallites may be at most about 0.5 micron, or at most about 0.3 micron, and the size of the secondary particles may be at least about 0.8 micron, or at least about 1.0 ?m. The silica to alumina ratio of the resulting stabilized aggregated Y zeolite may be 4:1 or more.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: July 15, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Wenyih Frank Lai, Robert E. Kay