Patents Examined by Diana J Liao
  • Patent number: 7875572
    Abstract: The present invention provides a catalyst for combustion treatment of suspended particulate matter in diesel exhaust gases, and a combustion catalyst for treating diesel exhaust gases in which a precious metal or an oxide thereof as the catalytic component is loaded on a carrier composed of oxide ceramic particles comprising ceria-zirconia or ceria-praseodymium oxide. In the present invention, depending on the carried precious metal, the carrier is preferably composed of oxide ceramic particles further comprising yttria or lanthanum oxide. The present invention provides a sufficient activity to combust suspended particulate matter in exhaust gases, and can cause combustion at a low temperature of about 300° C. It operates stably for a long period, and can burn suspended particulate matter, especially carbon microparticles.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: January 25, 2011
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Shunji Kikuhara, Takeshi Yamashita, Hitoshi Kubo, Kazuto Itaya, Masahiro Sasaki
  • Patent number: 7871956
    Abstract: This invention relates to a cerium-zirconium-base composite oxide, which is useful, e.g., for the purification of exhaust gas discharged from combustion engines such as internal combustion engines and boilers and can release a high level of oxygen in a low temperature region, a method for producing the same, an oxygen storage/release component using the same, an exhaust gas purification catalyst, and an exhaust gas purification method. The cerium-zirconium-base composite oxide satisfies requirements (1) that the oxygen release initiation temperature is 380° C. or below, (2) that the oxygen release amount is not less than 485 ?mol/g, and further (3) that the oxygen release amount at 400° C. is not less than 15 ?mol/g.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: January 18, 2011
    Assignees: Daiichi Kigenso Kagaku Kogyo Co., Ltd., N.E. Chemcat Corporation
    Inventors: Takahiro Wakita, Akira Kohara, Yasuharu Kanno, Hiroaki Omoto
  • Patent number: 7870724
    Abstract: The present invention provides a thermally stable catalyst for treating automobile exhaust by-products is provided. The catalyst of the invention comprises a first section that includes a precious metal present in a first concentration and a second section that includes a precious metal present in a second concentration. The catalyst of the invention is characterized by a unique precious metal concentration profile in which the first concentration of the precious metal is lower than the second concentration of the precious metal. When placed with an automobile exhaust system, the second section is positioned downstream of the first section. The present invention also provides a lean NOx trap utilizing the unique precious metal concentration profile. The NOx trap is found to possess improved NOx conversion performance relative to a NOx trap with the same total amount of precious metal deposited uniformly over the volume of the trap.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: January 18, 2011
    Assignee: Ford Global Technologies, LLC
    Inventors: Justin Ura, Joseph Theis, Christian Goralski, Jr.
  • Patent number: 7867461
    Abstract: The present invention relates to a method of preparing a cerium oxide powder for a CMP slurry and a method of preparing a CMP slurry using the same, and more particularly, to a method of preparing a cerium oxide powder for a CMP slurry and a method of preparing a CMP slurry using the same in which the specific surface area of the powder is increased by preparing a cerium precursor, and then decomposing and calcinating the prepared cerium precursor. The pore distribution is controlled to increase the chemical contact area between a polished film and a polishing material, thereby reducing polishing time while the physical strength of powder is decreased, which remarkably reduces scratches on a polished film.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: January 11, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Myoung-hwan Oh, Jun-seok Nho, Jang-yul Kim, Jong-pil Kim, Seung-beom Cho, Min-Jin Ko
  • Patent number: 7863217
    Abstract: Disclosed is an exhaust gas purifying catalyst, which comprises a catalyst layer formed on a honeycomb-shaped support. The catalyst layer is formed by mixing a catalyst powder (A) consisting of a composite oxide (RhZrCeNdO) which contains at least Ce, Zr, and a catalytic noble metal composition, and a catalyst powder (B) consisting of a Zr-based oxide (RhZrXO) which contains at least Zr and has Rh existing on a surface thereof. A ratio (RhZrXO/RhZrCeNdO) of a mass of the catalyst powder (B) to a total mass of the catalyst powder (A) and the catalyst powder (B) may be set in the range of 1 to 50%. Further, the catalyst powder (B) may consist of a composite oxide which contains Zr as a primary component, a rare-earth metal except Ce, and Rh. The exhaust gas purifying catalyst of the present invention can provide enhanced exhaust gas conversion efficiency.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: January 4, 2011
    Assignee: Mazda Motor Corporation
    Inventors: Koji Minoshima, Hiroshi Yamada, Seiji Miyoshi, Hideharu Iwakuni, Akihide Takami
  • Patent number: 7863215
    Abstract: Disclosed is a photocatalyst comprising a photocatalytically active base, and a silicon oxide film covering the base and substantially having no pores. The alkali metal content of the photocatalyst is not less than 1 ppm but not more than 1,000 ppm. Also disclosed is a method for producing such a photocatalyst wherein when a photocatalytically active base present in an aqueous medium is coated with a silicon oxide film by using a silicate, the pH of the aqueous medium containing both the photocatalytically active base and the silicate is maintained at 5 or below.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: January 4, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Satoru Miyazoe, Takashi Nabeta, Nobuhiko Horiuchi
  • Patent number: 7858066
    Abstract: The disclosure provides a process for preparing nanocrystalline titanium dioxide, in particular rutile nanocrystalline titanium dioxide, comprising: (a) precipitating a mixture comprising hydrated titanium oxide and a separable filtering agent; (b) filtering the precipitated mixture to form a filter cake comprising the precipitated hydrated titanium dioxide and a separable filtering agent, (c) calcining the precipitated hydrated titanium oxide and separable filtering agent at a temperature of greater than about 300° C.; and (d) removing the separable filtering agent thereby recovering titanium dioxide particles.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: December 28, 2010
    Assignee: E.I. du Pont de Nemours and Company
    Inventor: Carmine Torardi
  • Patent number: 7842271
    Abstract: Carbon nanostructures are mass produced from graphite. In particularly preferred aspects, graphene is thermo-chemically derived from graphite and used in numerous compositions. In further preferred aspects, the graphene is re-shaped to form other nanostructures, including nanofractals, optionally branched open-ended SWNT, nanoloops, and nanoonions.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: November 30, 2010
    Inventor: Viktor I. Petrik
  • Patent number: 7842642
    Abstract: The catalyst carrier in accordance with the present invention is a catalyst carrier comprising a support containing an oxide and an element in group 3A of the periodic table, and a coating part covering at least a part of a surface of the support; wherein the coating part contains an element in group 3A of the periodic table; and wherein the element in group 3A contained in the coating part has a concentration higher than that of the element in group 3A contained in the support. In this case, even when a catalyst in which rhodium is supported by the catalyst carrier is used for a long time in a high temperature environment, the grain growth of rhodium particles can be suppressed, and the catalyst can fully be prevented from lowering its activity.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: November 30, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Toshitaka Tanabe, Akira Morikawa, Naoki Takahashi, Hiromasa Suzuki, Akemi Sato, Mamoru Ishikiriyama, Takaaki Kanazawa, Oji Kuno
  • Patent number: 7824574
    Abstract: Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) CexByB?zB?O?, wherein B=Ba, Sr, Ca, or Zr; B?=Mn, Co, or Fe; B?=Cu; 0.01<x<0.99; 0<y<0.6; 0<z<0.5; and 1<?<2.2; (b) SrvLawBxB?yB?zO?, wherein B=Co or Fe; B?=Al or Ga; B?=Cu; 0.01<v<1.4; 0.1<w<1.6; 0.1<x<1.9; 0.1<y<0.9; 0<z<2.2; and 3<?<5.5).
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: November 2, 2010
    Assignee: Eltron Research & Development
    Inventors: James H. White, Erick J. Schutte, Sara L. Rolfe
  • Patent number: 7824643
    Abstract: Stable, aqueous dispersion containing silicon dioxide powder having a hydroxyl group density of 2.5 to 4.7 OH/nm2, which is obtained from a silicon dioxide powder produced by a flame hydrolysis process under acid conditions. The dispersion is produced by incorporating the silicon dioxide powder into an aqueous solution by means of a dispersing device. The dispersion can be used to produce glass articles.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: November 2, 2010
    Assignee: Evonik Degussa GmbH
    Inventors: Kai Schumacher, Monika Oswald
  • Patent number: 7820591
    Abstract: Disclosed herein is a dry regenerable sorbent for carbon dioxide capture from flue gas produced by fossil fuel-fired power plants including industrial boilers before being released to atmosphere or from fuel gas stream such as syngas produced by conversion of fossil fuel (e.g. gasification), by dry regenerable sorbent technology. The dry regenerable sorbent comprises: 70 wt % or less of an active component selected from solid compounds capable of being converted to metal carbonates; 70 wt % or less of a support selected from solid porous non-metallic materials capable of imparting a required specific surface area to the sorbent; and 70 wt % or less of an inorganic binder selected from cement-like, clay-like, and ceramic-like binders capable of imparting mechanical strength to the sorbent, the total weight of the solid raw materials being 100 wt %.
    Type: Grant
    Filed: January 4, 2005
    Date of Patent: October 26, 2010
    Assignees: Korea Electric Power Corporation, Korea South-East Power Co., Ltd., Korea South Power Co., Ltd., Korea Western Power Co., Ltd., Korea Midland Power Co., Ltd., Korea East-West Power Co., Ltd.
    Inventors: Chong-Kul Ryu, Joong-Beom Lee, Tae-Hyoung Eom, Je-Myung Oh
  • Patent number: 7820586
    Abstract: The invention concerns a composition based on zirconium and cerium oxides in an atomic ratio Zr/Ce>1, and further comprising lanthanum oxide or an oxide of a rare earth other than cerium and lanthanum. The invention is characterized in that after calcination for 6 hours at 1150 .C it has a specific surface area of not less than 10 m;/g. The composition is obtained by forming a mixture containing a sol of a zirconium compound and cerium, lanthanum, said rare earth compounds, contacting said mixture with a basic compound solution, while heating and calcining the resulting precipitate. The composition can be used as catalyst.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: October 26, 2010
    Assignee: Rhodia Operations
    Inventor: Catherine Hedouin
  • Patent number: 7811540
    Abstract: The invention provides a method of preparing hydrophobic silica particles comprising (a) providing an aqueous colloidal silica dispersion comprising about 5-70 wt. % of silica particles having an average overall particle size of about 10-1000 nm, wherein the silica particles comprise surface silanol groups, (b) combining the silica dispersion with about 3-75 ?mole/m2 (based on the BET surface area of the silica) of a silyl amine treating agent and optionally with other ingredients to provide a reaction mixture, wherein the reaction mixture has a pH of about 7 or more, and comprises no more than about 50 wt. % of an organic solvent, and (c) drying the dispersion to provide hydrophobic silica particles. The invention further provides a method of preparing a toner composition comprising combining the hydrophobic silica particles as recited above with toner particles to provide a toner composition.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: October 12, 2010
    Assignee: Cabot Corporation
    Inventor: Curtis E. Adams
  • Patent number: 7807604
    Abstract: Oxychlorination catalyst containing at least copper as an active element deposited on a support characterized in that the support consists essentially of an alumina obtained by calcination of an alumina hydrate obtained as by-product of the ALFOL® linear primary alcohol process and use of such catalyst in an oxychlorination process of a hydrocarbon containing 1 to 4 carbon atoms.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: October 5, 2010
    Assignee: Solvay (Societe Anonyme)
    Inventors: Michel Strebelle, André Petitjean
  • Patent number: 7803262
    Abstract: Methods are provided for aligning carbon nanotubes and for making a composite material comprising aligned carbon nanotubes. The method for aligning carbon nanotubes comprises adsorbing magnetic nanoparticles to carbon nanotubes dispersed in a fluid medium to form a magnetic particle-carbon nanotube composite in the fluid medium; and exposing the composite to a magnetic field effective to align the nanotubes in the fluid medium. The method for making a composite material comprising aligned carbon nanotubes comprises (1) adsorbing magnetic nanoparticles to carbon nanotubes to form a magnetic particle-carbon nanotube composite; (2) dispersing the magnetic particle-carbon nanotube composite in a fluid matrix material to form a mixture; (3) exposing the mixture to a magnetic field effective to align the nanotubes in the mixture; and (4) solidifying the fluid matrix material to form a nanotube/matrix material composite comprising the aligned nanotubes which remain aligned in the absence of said magnetic field.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: September 28, 2010
    Assignee: Florida State University Research Foundation
    Inventors: Yousef Haik, Jhunu Chatterjee, Ching-Jen Chen
  • Patent number: 7803343
    Abstract: New silica gel materials and novel methods of producing such are provided. The method itself entails a manner of mixing the reactants together in a one-pot process such that the time required for aging is reduced without compromising the ability to target pore size production. In such a way, the pH of the reaction drives pore size development, thereby permitting a more efficient process to be followed in terms of expensive drying/heating steps being reduced timewise, if not altogether. Furthermore, in one embodiment, the resultant gel materials exhibit a certain pore size minimum while simultaneously exhibiting a degree of softness heretofore unavailable. As such, not only is this novel method more efficient in silica gel manufacture, but the resultant materials are completely novel as well. The gel materials made therefrom may be utilized in a variety of different end uses, such as cooking oil filtration, soft skin cleansers, dental abrasives, and the like.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: September 28, 2010
    Assignee: J.M. Huber Corporation
    Inventors: Duen-Wu Hua, Michael C. Withiam, Francis R. W. Godwin, Fitzgerald A. Sinclair
  • Patent number: 7799731
    Abstract: A photocatalyst according to the invention comprises a photocatalytic film of a compound of titanium and oxygen and is characterized in that the photocatalytic film is made porous and has 0.02 or higher value as a value calculated by dividing the arithmetical mean deviation of profile Ra with the film thickness. The photocatalytic film can also be specified by the intensity ratio between x-ray diffraction peaks of the anatase structure of titanium oxide. Such a porous photocatalytic material can be obtained by a reactive sputtering method in conditions of adjusting film formation parameters such as the film formation rate, the sputtering pressure, the substrate temperature, the oxygen partial pressure and the like in proper ranges, respectively, and the photocatalyst material is provided with excellent decomposition and hydrophilization capability.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: September 21, 2010
    Assignee: Shibaura Mechatronics Corporation
    Inventors: Junji Hiraoka, Takahiro Doke, Hisato Haraga, Daisuke Noguchi, Yoshio Kawamata
  • Patent number: 7799303
    Abstract: There is provided a method of preparing silica (SiO2) nanoparticles from siliceous mudstone which is silica mineral sources, using a chemical reaction. The method of preparing silica nanoparticles from siliceous mudstone comprises: solving a silica constituent into a sodium silicate aqueous solution by a sodium hydroxide leaching reaction of the siliceous mudstone (S100); performing ion exchange to remove a sodium constituent from the sodium silicate aqueous solution and to prepare a silicate aqueous solution (S200); and performing flame spray pyrolysis to prepare silica nanoparticles with an average particle dimension being in a range of 9 to 57 nm from the silicate aqueous solution.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: September 21, 2010
    Assignee: Korea Institute of Geoscience and Mineral Resources
    Inventors: Hee-Dong Jang, Han-Kwon Chang, Ho-Sung Yoon
  • Patent number: 7799734
    Abstract: A catalyst carrier body, which is suitable for use in an exhaust system close to an internal combustion engine, has a multiplicity of passages through which a gas stream can flow and which extend next to one another between an inlet side and an outlet side. In order to allow efficient and permanent installation of an exhaust-gas treatment device, which can be subjected to high thermal and dynamic loads, the catalyst carrier body has at least one metallic sheet, which at a temperature of 900° C. at least has a proof stress Rp0.2 of 50 N/mm2. A catalytic converter, which is likewise suitable for this purpose, a corresponding exhaust system and a corresponding vehicle, are also provided.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: September 21, 2010
    Assignee: Emitec Gesellschaft fur Emissionstechnologie mbH
    Inventors: Wolfgang Maus, Rolf Brück