Patents Examined by Don J Williams
  • Patent number: 10786186
    Abstract: Disclosed is a non-invasive biometric sensor including a light source, an organic photodetector, and a detector. The light source is configured to irradiate light in a desired (and/or alternatively predetermined) wavelength range to a body part. The organic photodetector is configured to sense the light in the desired (and/or alternatively predetermined) wavelength range in response to the light in the desired (and/or alternatively predetermined) range being transmitted through the body part. The detector is configured to determine biomedical information of the body part based on an amount of the light sensed by the organic photodetector.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: September 29, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chul Joon Heo, Kyung Bae Park, Takkyun Ro, Kwang Hee Lee, Dongseon Lee, Yong Wan Jin, Moon Gyu Han
  • Patent number: 10775243
    Abstract: In accordance with heat received from a target object, a visible light absorption element 10 changes a frequency component of visible light to reflect or transmit. The visible light absorption element 10 possesses a resonance frequency included in a visible light frequency region. The visible light absorption element 10 absorbs visible light of the resonance frequency. The visible light absorption element 10 thermally deforms due to temperature change to thereby change the resonance frequency, and absorbs visible light of the changed resonance frequency.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: September 15, 2020
    Assignee: RIKEN
    Inventor: Takuo Tanaka
  • Patent number: 10768404
    Abstract: A modulation monitoring system is disclosed for use with an imaging system that includes a variable focal length (VFL) lens, an objective lens, a camera, and a VFL lens controller which is configured to control the VFL lens to periodically modulate its optical power and thereby periodically modulate a focus position of the imaging system over a plurality of Z heights along a Z height direction. The modulation monitoring system comprises a VFL-traversing light source, comprising a light source configured to provide VFL-traversing light along a modulation monitoring light path through the VFL lens, and a modulation signal determining portion comprising an optical detector configured to receive the VFL-traversing light, and to provide at least one optical detector signal that corresponds to the modulated optical power of the VFL lens. The modulation monitoring portion outputs a least one modulation monitoring signal based on the at least one optical detector signal.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: September 8, 2020
    Assignee: Mitutoyo Corporation
    Inventor: Scott Allen Harsila
  • Patent number: 10771007
    Abstract: A solar tracker assembly is provided which includes a support column, a torque tube or torsion beam connected to the support column, a mounting mechanism attached to the torque tube or torsion beam, a drive system connected to the torque tube or torsion beam, and a spring counter-balance assembly connected to the torque tube or torsion beam. An exemplary spring counter-balance assembly comprises a bearing housing and a bushing disposed within the bearing housing and configured to be slideably mounted onto the torque tube or torsion beam, and one or more compressible cords made of a flexible material. The compressible cords are located between the bushing and the bearing housing and provide damping during rotational movement of the solar tracker assembly. An exemplary spring counter-balance assembly is provided including at least one top bracket and at least one bottom bracket, at least one spring, a damper, and a bracket.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: September 8, 2020
    Assignee: Array Technologies, Inc.
    Inventor: Ronald P. Corio
  • Patent number: 10760962
    Abstract: A spectroscopic measurement device includes a light receiving element that receives light and outputs a light receiving signal, a variable amplification circuit that amplifies the light receiving signal which is input, and a dark voltage correction unit that calculates a correction coefficient that is a rate of change of a dark voltage value with respect to gains, based on an output value of the variable amplification circuit with each value of two or more gains which are equal to or greater than a predetermined value in an environment where no light is incident on the light receiving element.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: September 1, 2020
    Assignee: Seiko Epson Corporation
    Inventor: Ryohei Kuri
  • Patent number: 10760960
    Abstract: A coincidence resolving time readout circuit is described. An analog SiPM sensor for detecting photons and generating an SIPM output signal is provided. An ADC is configured to provide multiple threshold values for converting the analogue SiPM output signal to digital values. A time to digital converter configured to receive multiple digital values from the ADC and timestamp the digital values.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: September 1, 2020
    Assignee: SENSL TECHNOLOGIES LTD.
    Inventors: Salvatore Gnecchi, John Carlton Jackson, Edoardo Charbon
  • Patent number: 10760992
    Abstract: An optical power monitor device includes a first optical fiber, including a core and a cladding surrounding the core and being at least one of an incidence-side optical fiber and a launch-side optical fiber connected to each other at a connection point, which is constituted by a curve portion and a linear portion between the curve portion and the connection point, a low refractive index layer that is provided in at least a portion of the linear portion on an outer side of the cladding and has a refractive index lower than a refractive index of the cladding, and a first optical detector that is provided at a position close to at least the curve portion.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: September 1, 2020
    Assignee: FUJIKURA LTD.
    Inventor: Masahiro Kashiwagi
  • Patent number: 10760963
    Abstract: A circuit arrangement comprises a photo detector (2) for detecting electromagnetic energy and a signal generating means (4, 6, 12, 16) being suitable for generating a sequence of events wherein an event interval of the sequence depends on the detected electromagnetic energy. The signal generating means (4, 6, 12, 16) is coupled downstream of the photo detector (2). A counting means (30, 32, 34, 36) for measuring a time period until a given number of events has been generated is coupled downstream of the signal generating means (4, 6, 12, 16).
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: September 1, 2020
    Assignee: ams International AG
    Inventor: Gregg Kodra
  • Patent number: 10753773
    Abstract: A angle detection system, includes a first member pivotally coupled to a second member. An optical cable connecting an optical transmitter provided on the first member and an optical receiver provided on the second member is used by an angle detection engine to determine signal loss of an optical signal provided by the optical transmitter through the optical cable to the optical receiver. The angle detection engine then determines, based on the signal loss, a first angle of the second member relative to the first member. The angle detection engine then performs an instruction based on the first angle.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: August 25, 2020
    Assignee: Dell Products L.P.
    Inventors: John Trevor Morrison, Jace William Files
  • Patent number: 10748958
    Abstract: A solid-state imaging device includes: plural photodiodes formed in different depths in a unit pixel area of a substrate; and plural vertical transistors formed in the depth direction from one face side of the substrate so that gate portions for reading signal charges obtained by photoelectric conversion in the plural photodiodes are formed in depths corresponding to the respective photodiodes.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: August 18, 2020
    Assignee: Sony Corporation
    Inventors: Taiichiro Watanabe, Akihiro Yamada, Hideo Kido, Hiromasa Saito, Keiji Mabuchi, Yuko Ohgishi
  • Patent number: 10746573
    Abstract: An optical encoder includes a light source, a plurality of diffraction gratings including grating faces on which a plurality of grooves are disposed in parallel, and a light-receiving unit configured to receive the light diffracted at the plurality of diffraction gratings. The diffraction gratings include a first diffraction grating that is a first-stage diffraction grating adjacent to the light source, a third diffraction grating that is a last-stage diffraction grating adjacent to the light-receiving unit, and a second diffraction grating that is an output-stage diffraction grating of the first-stage diffraction grating and an input-stage diffraction grating of the last-stage diffraction grating. The diffraction gratings are disposed such that the ratio of the first gap to the third gap equals the ratio of the second gap to the fourth gap, and a length of the first gap differs from a length of the second gap.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: August 18, 2020
    Assignee: MITUTOYO CORPORATION
    Inventor: Akihide Kimura
  • Patent number: 10746924
    Abstract: An optical communication device includes a support substrate, an optical waveguide, and a detector. The optical waveguide includes a first cladding layer that is formed on the support substrate, and is composed of silicon oxide or a material containing silicon oxide; a second cladding layer formed on the first cladding layer; and a core that is formed within the second cladding layer or between the first cladding layer and the second cladding layer, and is composed of silicon or a silicon-containing material. The detector contacts a part of the core, and is adapted to detect an intensity of light propagating through the core.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: August 18, 2020
    Assignee: FUJITSU OPTICAL COMPONENTS LIMITED
    Inventor: Masaki Sugiyama
  • Patent number: 10741598
    Abstract: An optical apparatus including a semiconductor substrate; a first light absorption region supported by the semiconductor substrate, the first light absorption region configured to absorb photons and to generate photo-carriers from the absorbed photons; one or more first switches controlled by a first control signal, the one or more first switches configured to collect at least a portion of the photo-carriers based on the first control signal; one or more second switches controlled by a second control signal, the one or more second switches configured to collect at least a portion of the photo-carriers based on the second control signal; and a counter-doped region formed in a first portion of the first light absorption region, the counter-doped region including a first dopant and having a first net carrier concentration lower than a second net carrier concentration of a second portion of the first light absorption region.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: August 11, 2020
    Assignee: Atrilux, Inc.
    Inventors: Yun-Chung Na, Che-Fu Liang, Szu-Lin Cheng, Shu-Lu Chen, Kuan-Chen Chu, Chung-Chih Lin, Han-Din Liu
  • Patent number: 10737292
    Abstract: A light irradiation device includes at least one irradiation unit including a reflective surface which is disposed in a concave inner surface formed to have a substantially arc shape and into which a wire member is inserted, and a light source which is configured to emit light toward the wire member and is disposed so as to face the reflective surface in a direction of an optical axis of the emitted light, and an insertion portion configured to interiorly form an insertion path for inserting the wire member into the reflective surface. The reflective surface is disposed such that a center of the substantially arc shape is eccentric with respect to a center of the insertion path.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: August 11, 2020
    Assignee: USHIO DENKI KABUSHIKI KAISHA
    Inventors: Kazuhiko Shinoda, Toshihiro Nakajima
  • Patent number: 10739169
    Abstract: A distributed sensing optical fiber cable is proposed. An optical fiber is positioned at the center of the cable and includes a core region, at least one cladding layer surrounding the core region, a protective coating covering the at least one cladding layer, and a tight buffer of elastomeric thermoplastic material disposed to surround the protective coating. The remainder of the cable structure includes a pair of strength members disposed longitudinally on either side of the optical fiber (the strength members formed of a glass-based, memory-less material) and a hard plastic jacket formed to encase the optical fiber and the pair of strength members, the plastic jacket preferably exhibiting an essentially rectangular profile.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: August 11, 2020
    Assignee: OFS FITEL, LLC
    Inventors: John E Pacini, Brian Violette, Jacob Ulrik Petersen
  • Patent number: 10703073
    Abstract: A vehicle composite pane with an integrated light sensor is disclosed. The vehicle composite pane includes an outer pane and an inner pane that are bonded to one another via a thermoplastic intermediate layer. A plurality of photodiodes situated on a circuit board are arranged between the outer pane and the inner pane. The photodiodes are surface-mounted device (SMD) components. The photodiodes are arranged on the circuit board as groups of parallel connected photodiodes. All groups of the parallel connected photodiodes are connected to a common electrical input and each group is connected to a separate electrical output.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: July 7, 2020
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventors: Christian Effertz, Klaus Schmalbuch, Dirk Wohlfeil, Detlev Duerkop, Guido Schwinges, Michael Zeiss
  • Patent number: 10697829
    Abstract: Compact Single Photon Avalanche Diode (SPAD) array structures are described. An on board common trigger circuit is used for two or more SPAD structures. The common trigger includes a compact counter and flash memory constructed adjacent two or more SPAD structures. Triggering of a SPAD latches the value of the counter and the value is stored in the memory along with the ID of the triggering SPAD. The counter continues counting, and if another SPAD subsequently triggers, the counter is again latched and the value is stored in the memory along with the ID of the subsequently triggering SPAD. The memory can be read and the triggering circuit reset. Methods for designing compact SPAD structures, a compact active quenching circuit and a compact 16 bit counter are described.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: June 30, 2020
    Assignee: The Commonwealth of Australia
    Inventor: Dennis Victor Delic
  • Patent number: 10694605
    Abstract: One embodiment of the invention relates to a system for operating a plurality of streetlights in response to motion from a vehicle. The system includes a sensor associated with at least one of the streetlights and configured to detect the presence of a moving vehicle and to provide a signal representative of the moving vehicle. The system further includes a radio frequency transceiver associated with each of the streetlights. The system yet further includes processing electronics configured to receive the signal representative of the moving vehicle from the sensor and to cause the radio frequency transceiver to transmit a command to one or more of the plurality of the streetlights to change lighting states along a pathway for the vehicle.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: June 23, 2020
    Assignee: ORION ENERGY SYSTEMS, INC.
    Inventor: Neal R. Verfuerth
  • Patent number: 10694594
    Abstract: A system for controlling lighting includes a control module coupled to a driver, a light source coupled to the driver, a first sensor configured to cooperate with the control module to detect occupancy and control the power delivered to the light source according to a signal provided by the first sensor, and a second sensor configured to cooperate with the control module to detect ambient light and control the power delivered according to a signal provided by the second sensor. A GUI executing on a controller device wirelessly coupled to the control module communicates with the control module to configure the operation thereof, executes on a touch-sensitive display configured to facilitate user interaction with the controller, and creates one or more control groups. The GUI is also operable to control the driver to control the state of the light source.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: June 23, 2020
    Assignee: ORION ENERGY SYSTEMS, INC.
    Inventors: Neal R. Verfuerth, Daniel J. Czaja, Jr., Michael J. Potts, Ryan M. Franzen, Eric A. Smasal
  • Patent number: 10692913
    Abstract: In an image pickup element or a photoelectric conversion element, at least an anode 21, a carrier blocking layer 22, an organic photoelectric conversion layer 23, and a cathode 25 are laminated in order, and the carrier blocking layer 22 includes a material having the following structural formula (1), and part of an organic semiconductor material constituting the organic photoelectric conversion layer 23.
    Type: Grant
    Filed: May 30, 2016
    Date of Patent: June 23, 2020
    Assignee: SONY CORPORATION
    Inventors: Masaki Murata, Yasuharu Ujiie, Shintarou Hirata, Yuya Kumagai