Patents Examined by Ellen E. Kim
  • Patent number: 11635567
    Abstract: Embodiments of a thermally modulated photonic switch are presented herein. One embodiment comprises a topology-optimized structure that includes dispersed silicon and silicon dioxide. This topology-optimized structure includes an input waveguide, a first output waveguide, and a second output waveguide. The topology-optimized structure routes a light beam from the input waveguide to the first output waveguide, when the topology-optimized structure is at a first predetermined temperature that causes a refractive index of the silicon in the topology-optimized structure to assume a first predetermined value, and the topology-optimized structure routes a light beam from the input waveguide to the second output waveguide, when the topology-optimized structure is at a second predetermined temperature that causes the refractive index of the silicon in the topology-optimized structure to assume a second predetermined value that is distinct from the first predetermined value.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: April 25, 2023
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Sean P. Rodrigues, Yuqing Zhou
  • Patent number: 11635643
    Abstract: An optical attenuating structure is provided. The optical attenuating structure includes a substrate, a waveguide, doping regions, an optical attenuating member, and a dielectric layer. The waveguide is extended over the substrate. The doping regions are disposed over the substrate, and include a first doping region, a second doping region opposite to the first doping region and separated from the first doping region by the waveguide, a first electrode extended over the substrate and in the first doping region, and a second electrode extended over the substrate and in the second doping region. The first optical attenuating member is coupled with the waveguide and disposed between the waveguide and the first electrode. The dielectric layer is disposed over the substrate and covers the waveguide, the doping regions and the first optical attenuating member.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: April 25, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Huan-Neng Chen, Feng-Wei KUo, Min-Hsiang Hsu, Lan-Chou Cho, Chewn-Pu Jou, Wen-Shiang Liao
  • Patent number: 11630370
    Abstract: An optical transmitter comprises a directly coupled MZ interferometer and driver circuit. The MZ interferometer comprises a pair of differentially driven MZ electrodes configured to impart RF signals to light travelling through respective arms of the interferometer, and to receive DC bias as a positive voltage via lower n-type cladding of the MZ interferometer. The lower n-type cladding is at a different positive DC potential to an upper plane RF ground of the MZ interferometer, but the lower n-type cladding and the upper plane RF ground have similar AC potential. The MZ interferometer also comprises a pair of resistors in series configured to provide differential RF termination of the MZ electrodes; and a capacitive coupling between a virtual ground formed at a centre point between the pair of resistors and an RF ground configured to provide common-mode RF termination. The DC supply for the driver circuit is applied to the centre point of the RF termination.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: April 18, 2023
    Assignee: Lumentum Technology UK Limited
    Inventors: Samuel Davies, Andrew John Ward
  • Patent number: 11630308
    Abstract: Provided are an optical element that can make the brightness of light emitted from a light guide plate uniform, a light guide element, and an image display device. The optical element includes a patterned cholesteric liquid crystal layer that is obtained by immobilizing a cholesteric liquid crystalline phase, in which the patterned cholesteric liquid crystal layer has a liquid crystal alignment pattern in which a direction of an optical axis derived from a liquid crystal compound changes while continuously rotating in at least one in-plane direction, and the patterned cholesteric liquid crystal layer has regions having different pitches of helical structures in a plane.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: April 18, 2023
    Assignee: FUJIFILM Corporation
    Inventors: Hiroshi Sato, Yukito Saitoh, Ayako Muramatsu, Daisuke Kashiwagi, Katsumi Sasata
  • Patent number: 11630261
    Abstract: One embodiment described herein provides a co-packaged optics (CPO) switch assembly. The CPO switch assembly includes a switch integrated circuit (IC) chip and a number of optical modules coupled to the switch IC chip. The switch IC chip and the optical modules are co-packaged within a same physical enclosure. The switch IC chip includes a switch logic and a digital signal processing (DSP) unit, and a respective optical module comprises: a photonic integrated chip (PIC), a first amplifier module, and a second amplifier module.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: April 18, 2023
    Assignee: ALIBABA SINGAPORE HOLDING PRIVATE LIMITED
    Inventor: Chongjin Xie
  • Patent number: 11630278
    Abstract: A cabinet unit for use in an optical fiber distribution system may include a housing having a cavity, a plurality of extension portions contained within the housing, each extension portion being adapted to support an adapter for receiving cables aligned lengthwise with the extension portion, and a support structure formed on an inner surface of the housing, each extension portion being mounted to the housing by the support structure and extends away from the inner surface of the housing. The plurality of extension portions may be hingedly coupled to the support structure. A clearance between two adjacent extension portions of a given support bar may be configured to be adjusted by rotating the adjacent extension portions along their respective hinged connections.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: April 18, 2023
    Assignee: Go!Foton Holdings, Inc.
    Inventors: Kenichiro Takeuchi, David Zhi Chen, Alla Shtabnaya, Haiguang Lu
  • Patent number: 11624882
    Abstract: MicroLEDs may be used in providing intra-chip optical communications and/or inter-chip optical communications, for example within a multi-chip module or semiconductor package containing multiple integrated circuit semiconductor chips. In some embodiments the integrated circuit semiconductor chips may be distributed across different shelves in a rack. The optical interconnections may make use of optical couplings, for example in the form of lens(es) and/or mirrors. In some embodiments arrays of microLEDs and arrays of photodetectors are used in providing parallel links, which in some embodiments are duplex links.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: April 11, 2023
    Assignee: AVICENATECH CORP.
    Inventors: Bardia Pezeshki, Robert Kalman
  • Patent number: 11619778
    Abstract: A microstructured optical fiber having a length and a longitudinal axis along its length, the finer including a core region capable of guiding light along the longitudinal axis and a cladding region which surrounds the core region, the cladding region comprising a cladding background material and a plurality of cladding features within the cladding background material, the cladding features being arranged around the core region, wherein the cladding region comprises an inner cladding region comprising an innermost ring of cladding features and an outer cladding region comprises outer cladding rings of outer cladding features, the innermost ring consisting of those cladding features being closest to the core region, wherein the rings of cladding features each comprise bridges of cladding background material separating adjacent features of the ring, wherein the bridges of the innermost ring have an average minimum width (w1), the minimum width of a bridge of a ring being the shortest distance between two adjace
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: April 4, 2023
    Assignee: NKT PHOTONICS A/S
    Inventors: Jens Kristian Lyngsøe, Christian Jacobsen
  • Patent number: 11619780
    Abstract: A thermal compensator, for use in connection with arrayed waveguide grating (AWG) modules which are, in turn, utilized in conjunction with wavelength multiplexing and de-multiplexing within optical networks, is disclosed. The thermal compensator comprises a bow-shaped frame member, a central bar member, and a screw. The bow-shaped frame member is characterized by a higher or great coefficient of thermal expansion (CTE) than that of the central bar member such that the bow-shaped frame member can expand and elongate at a greater rate than can the central bar member under hot temperature conditions, however, under cold temperature conditions, the rate of contraction of the bow-shaped member is effectively retarded by the slower rate of contraction of the central bar member.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: April 4, 2023
    Assignee: Molex, LLC
    Inventors: Shuyu Zhang, Glenn Lee, Mike Chia Huang, Taizhong Huang
  • Patent number: 11619785
    Abstract: An optical device including a waveguide grating is disclosed. The optical device may be used as an optical cavity for a laser device, for instance, of an integrated laser device for light detection and ranging (Lidar) applications. In one aspect, the optical device includes a waveguide grating for guiding light, a heating layer provided beneath or above the waveguide grating, and two or more contacts for passing a current through the heating layer, to generate heat in the heating layer. The heating layer is thermally coupled to the waveguide grating and is optically decoupled from the waveguide grating.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: April 4, 2023
    Assignee: IMEC vzw
    Inventors: Charles Caer, Sarvagya Paavan Dwivedi
  • Patent number: 11619783
    Abstract: The disclosed technology can be implemented in photonics integrated circuit (PIC) to provide an optical frequency detection device for measuring an optical frequency of light using two Mach-Zehnder interferometer where the delay imbalance in the first interferometer is configured to be one quarter wavelength longer than that of the second interferometer to produce an additional phase difference between the two arms. The two outputs of each interferometer are then detected by two photodetectors to produce two complementary interference signals. The difference between the two complementary interference signals of the first interferometer is a sine function of the optical frequency while the difference between the two complementary interference signals of the second interferometer is proportional to a cosine function of the optical frequency. Using the sine/cosine interpretation algorithm commonly used for the rotation encoders/decoders, any increments in optical frequency can be readily obtained.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: April 4, 2023
    Inventor: Xiaotian Steve Yao
  • Patent number: 11619793
    Abstract: Examples of optical splitter systems, methods and modules enable the stacking and interconnecting of one or more optical splitter modules. One example of a splitter module has a housing and one or more connection members for connecting to adjacent instances of like splitter modules. The housing includes a plurality of cable ports providing access to an optical splitter storage area. Each connection member includes a tab and a slot, the tab configured to slidingly engage with the slot of an adjacent connection member. Sliding engagement of adjacent instances of splitter modules can form a stack of splitter modules along a stacking axis. In some cases a splitter module includes a latching mechanism to removably engage an adjacent splitter module. The latching mechanism can restrict sliding engagement and thus decoupling of the adjacent splitter modules.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: April 4, 2023
    Assignee: PPC BROADBAND, INC.
    Inventors: Nicholas B. Larsson, George I. Wakileh, Joselyn Gabriela Gamboa
  • Patent number: 11614592
    Abstract: Photonic devices and methods of manufacture are provided. In embodiments a fill material and/or a secondary waveguide are utilized in order to protect other internal structures such as grating couplers from the rigors of subsequent processing steps. Through the use of these structures at the appropriate times during the manufacturing process, damage and debris that would otherwise interfere with the manufacturing process of the device or operation of the device can be avoided.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: March 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Chih-Hsuan Tai, Hua-Kuei Lin, Tsung-Yuan Yu, Min-Hsiang Hsu
  • Patent number: 11614593
    Abstract: A modular multi-positionable tray assembly (420) for mounting within a chassis (10) of a telecommunications panel (100) is disclosed. The multi-positionable tray assembly (420) may include support arm structure (423) having a first support arm (424) and a second support arm (480) that pivotally supports a tray (422) and that allows the tray assembly (420) to be installed and removed from the chassis (10). The tray (422) and the support arm structure (423) cooperatively define a cable routing pathway (208) that extends through a pivot axis (A1) defined by the tray and the support arm. To protect the cables (300) and to increase accessibility of cables (300) within the portion of the cable routing pathway (208) defined by the tray (422), a bend radius limiter (460) can be provided that is rotatably mounted to the tray (422). The tray (422) can also be provided with attachment features for allowing the tray (422) to accept various telecommunications components, such as splice trays and splitter trays.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: March 28, 2023
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: Johan Geens, Pieter Vermeulen, Eric Marcel M. Keustermans
  • Patent number: 11609372
    Abstract: In some implementations, a photonic transmission structure includes a first cladding structure; a first active structure disposed over the first cladding structure; and a second cladding structure disposed over the first active structure. The first active structure includes a non-alkali, oxide solution that includes a cation that is niobium.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: March 21, 2023
    Assignee: VIAVI Solutions Inc.
    Inventor: William D. Houck
  • Patent number: 11609394
    Abstract: An optical transceiver may include a housing including a surface cutout. The surface cutout may be for receiving a locking tang from a cage and for being disengaged by a slide from an unlocking tool wherein the surface cutout is disposed on the housing at a position such that the surface cutout is entirely within the cage with respect to an electromagnetic interference (EMI) gasket of the cage when the optical transceiver is inserted into the cage.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: March 21, 2023
    Assignee: Lumentum Operations LLC
    Inventors: Georges Turcotte, Adonios Bitzanis
  • Patent number: 11609418
    Abstract: An eyepiece includes a substrate and an in-coupling grating patterned on a single side of the substrate. A first grating coupler is patterned on the single side of the substrate and has a first grating pattern. The first grating coupler is optically coupled to the in-coupling grating. A second grating coupler is patterned on the single side of the substrate adjacent to the first grating coupler. The second grating coupler has a second grating pattern different from the first grating pattern. The second grating coupler is optically coupled to the in-coupling grating.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: March 21, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Kang Luo, Vikramjit Singh, Nai-Wen Pi, Shuqiang Yang, Frank Y. Xu
  • Patent number: 11592632
    Abstract: An optical fiber cable including an optical fiber ribbon in a pipe, wherein the ribbon includes at least two optical fibers arranged side by side, and wherein at least two of the optical fibers are bonded intermittently along a length of the fibers.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: February 28, 2023
    Inventors: Joseph Cignarale, Doug Baker, Yoshio Hashimoto, Ken Osato
  • Patent number: 11592614
    Abstract: Improvements to gratings for use in waveguides and methods of producing them are described herein. Deep surface relief gratings (SRGs) may offer many advantages over conventional SRGs and Bragg gratings, an important one being a higher S-diffraction efficiency. In one embodiment, deep SRGs can be implemented as polymer surface relief gratings or evacuated Bragg gratings (EBGs). EBGs can be formed by first recording a holographic polymer dispersed liquid crystal (HPDLC) grating. Removing the liquid crystal from the cured grating provides a polymer surface relief grating. Polymer surface relief gratings have many applications including for use in waveguide-based displays.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: February 28, 2023
    Assignee: DigiLens Inc.
    Inventors: Jonathan David Waldern, Alastair John Grant, Milan Momcilo Popovich, Shibu Abraham, Baeddan George Hill, Tsung-Jui Ho
  • Patent number: 11585967
    Abstract: A grating coupler may be fabricated by exposing a photopolymer layer to grating forming light for forming periodic refractive index variations in the photopolymer layer. The photopolymer layer may be exposed to apodization light for reducing an amplitude of the periodic refractive index variations in a spatially-selective manner. The apodization may also be achieved or facilitated by subjecting outer surface(s) of the photopolymer layer to a chemically reactive agent that causes the refractive index contrast to be reduced near the surface(s) of application. The apodized refractive index profile of the gratings facilitates the reduction of optical crosstalk between different gratings of the grating coupler.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: February 21, 2023
    Assignee: Meta Platforms Technologies LLC
    Inventors: Marvin Dion Alim, Austin Lane, Kavous Jorabchi, Yang Yang, Janee Ashley McNeil