Patents Examined by Elmer M Chao
  • Patent number: 10349889
    Abstract: A portable biometric wrist device having an optical sensor and including at least one light source and at least one light detector installed onto a circuit board, a casing having at least one aperture for said at least one light source and at least one aperture for said at least one light detector, wherein each of said at least one light source and at least one light detector are optically isolated from each other inside said casing with a sealing plate between said casing and said circuit board, said sealing plate having at least one aperture for said at least one light source and at least one aperture for at said least one light detector. The present invention also provides a method for manufacturing said portable biometric wrist device.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: July 16, 2019
    Assignee: PULSEON OY
    Inventor: Jari Nousiainen
  • Patent number: 10307183
    Abstract: A surgical access assembly and method of use is disclosed. The surgical access assembly comprises an outer sheath and an obturator. The outer sheath and obturator are configured to be delivered to an area of interest within the brain. Either the outer sheath or the obturator may be configured to operate with a navigational system to track the location of either device within the brain.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: June 4, 2019
    Assignee: Nico Corporation
    Inventors: Joseph L. Mark, Amin Kassam
  • Patent number: 10300310
    Abstract: Described herein is an implantable device having a sensor configured to detect an amount of an analyte, a pH, a temperature, strain, or a pressure; and an ultrasonic transducer with a length of about 5 mm or less in the longest dimension, configured to receive current modulated based on the analyte amount, the pH, the temperature, or the pressure detected by the sensor, and emit an ultrasonic backscatter based on the received current. The implantable device can be implanted in a subject, such as an animal or a plant. Also described herein are systems including one or more implantable devices and an interrogator comprising one or more ultrasonic transducers configured to transmit ultrasonic waves to the one or more implantable devices or receive ultrasonic backscatter from the one or more implantable devices. Also described are methods of detecting an amount of an analyte, a pH, a temperature, a strain, or a pressure.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: May 28, 2019
    Assignee: The Regents of the University of California
    Inventors: Michel M. Maharbiz, Jose M. Carmena, Mekhail Anwar, Burak A. Ozilgen, Dongjin Seo, Federica Fava
  • Patent number: 10300309
    Abstract: Described herein is an implantable device having a sensor configured to detect an amount of an analyte, a pH, a temperature, strain, or a pressure; and an ultrasonic transducer with a length of about 5 mm or less in the longest dimension, configured to receive current modulated based on the analyte amount, the pH, the temperature, or the pressure detected by the sensor, and emit an ultrasonic backscatter based on the received current. The implantable device can be implanted in a subject, such as an animal or a plant. Also described herein are systems including one or more implantable devices and an interrogator comprising one or more ultrasonic transducers configured to transmit ultrasonic waves to the one or more implantable devices or receive ultrasonic backscatter from the one or more implantable devices. Also described are methods of detecting an amount of an analyte, a pH, a temperature, a strain, or a pressure.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: May 28, 2019
    Assignee: The Regents of the University of California
    Inventors: Michel M. Maharbiz, Jose M. Carmena, Mekhail Anwar, Burak A. Ozilgen, Dongjin Seo, Federica Fava
  • Patent number: 10292676
    Abstract: Computer-implemented methods for use in improving the diagnostic quality of images, including intravascular ultrasound (IVUS) images, are disclosed. The methods include using a non-linear, probabilistic classifier algorithm to analyze a plurality of spatiotemporal features of RF backscatter and to produce a blood likelihood map or blood probability map that corresponds to the original IVUS image. The methods disclosed herein allow for visualizing both static and dynamic characteristic of a vessel either by producing a transparency modulated color overlay of the blood likelihood map without altering the underlying IVUS image or by processing the IVUS image based upon the blood likelihood map to better distinguish between static and dynamic components of the vessel.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: May 21, 2019
    Assignee: VOLCANO CORPORATON
    Inventors: Nikhil Rajguru, Vladimir Zagrodsky, David Goodwin, Jon Klingensmith, Wolf-Ekkehard Blanz, Bernhard Sturm
  • Patent number: 10292765
    Abstract: A photoablation device includes a laser source to propagate a focused laser beam with a beam waist, wherein a radius of the beam increases from the waist in a direction of propagation of the beam; an adjusting structure to adjust an intensity of the beam; a position detector to detect a position of the source in relation to the tissue; a positioning device to move the source in relation to the tissue; and a controller. The controller is to define a photoablation zone of the beam, wherein the zone ends in a cutting face located offset from the waist in the direction of propagation; adjust the intensity of the beam at the face of the zone using the adjusting structure; and move the beam towards the tissue by using the positioning device, wherein the position of the source detected by the position detector is evaluated.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: May 21, 2019
    Assignee: Advanced Osteotomy Tools—AOT AG
    Inventors: Alfredo E. Bruno, Philippe Cattin, Waldemar Deibel
  • Patent number: 10288786
    Abstract: Method, device (100) and system (200) for detection and quantification of the variation of eye damage caused by the blue and violet light of the visible spectrum comprising the steps of detecting the incident radiation on an individual's visual system; calculating the incident radiation within the range between 380 and 500 nm; establishing at least one threshold of incident radiation within said range; detecting if at least one threshold established for said range has been exceeded; warning of the excess of at least one threshold; measuring the exposure time to incident radiation; and inferring in the different ocular structures of an individual the effect of incident radiation and warning of such effect.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: May 14, 2019
    Assignees: UNIVERSIDAD COMPLUTENSE DE MADRID, CRAMBO, S.A.
    Inventors: Celia Sanchez Ramos, Nilo Garcia Manchado
  • Patent number: 10269112
    Abstract: Through the measurement and interpretation of the pixels of grayscale digital thermographic images of abnormalities of the skin and its subcutaneous tissue, early intervention and treatment of abnormalities of the skin and its subcutaneous tissue are possible, thereby assisting clinicians in making significant impacts on prevention and treatment.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: April 23, 2019
    Assignee: WoundVision, LLC
    Inventors: James G. Spahn, Kadambari Nuguru
  • Patent number: 10213100
    Abstract: An optical coherence tomography apparatus includes an OCT optical system configured to detect an OCT signal based on measurement light scanned on scan positions of a subject including a blood vessel network by a scanning unit and reference light. The optical coherence tomography apparatus is configured to execute: a signal processing instruction of processing OCT signals which are temporally different from each other with respect to a same position on the subject and generating a motion contrast image which images distribution of a moving object in a depth direction at each of the scan positions based on the OCT signals; and a detecting instruction of analyzing a profile in the depth direction of the motion contrast image generated by the signal processing unit and detecting a change resulting from the blood vessel to detect the blood vessel network included in the subject.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: February 26, 2019
    Assignee: NIDEK CO., LTD.
    Inventors: Naoki Takeno, Yasuhiro Furuuchi, Hajime Namiki
  • Patent number: 10201324
    Abstract: A method for categorizing whole-breast density is disclosed. The method includes the steps of exposing breast tissue to an acoustic signal; measuring a distribution of an acoustic parameter by analyzing the acoustic signal; and obtaining a measure of whole-breast density from said measuring step. An apparatus is also disclosed.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: February 12, 2019
    Assignee: Delphinus Medical Technologies, Inc.
    Inventors: Carri Glide-Hurst, Nebojsa Duric, Peter Littrup