Patents Examined by Eric Ashbahian
  • Patent number: 9178062
    Abstract: Various embodiments provide an MOS transistor, a formation method thereof, and an SRAM memory cell circuit. An exemplary MOS transistor can include a channel region including an asymmetric stressing layer having a stress gradually varied from a compressive stress to a tensile stress or from a tensile stress to a compressive stress from a first end of the channel region adjacent to a source region to a second end of the channel region adjacent to a drain region. The MOS transistor can be used as a transfer transistor in an SRAM memory cell circuit to increase a source-drain saturation current in a write operation and to reduce a source-drain saturation current in a read operation. Read and write margins of the SRAM can be increased.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: November 3, 2015
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL CORP.
    Inventors: Zhenghao Gan, Zhongshan Hong, Junhong Feng
  • Patent number: 9166099
    Abstract: A graphene light-emitting device and a method of manufacturing the same are provided. The graphene light-emitting device includes a p-type graphene doped with a p-type dopant; an n-type graphene doped with an n-type dopant; and an active graphene that is disposed between the type graphene and the n-type graphene and emits light, wherein the p-type graphene, the n-type graphene, and the active graphene are horizontally disposed.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: October 20, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung-won Hwang, Geun-woo Ko, Sung-hyun Sim, Hun-jae Chung, Han-kyu Seong, Cheol-soo Sone, Jin-hyun Lee, Hyung-duk Ko, Suk-ho Choi, Sung Kim
  • Patent number: 9159789
    Abstract: An field effect transistor has a plurality of cells provided on a first straight line. Each cell has a plurality of multi-finger electrodes and is connected to a gate terminal electrode and a drain terminal electrode. The multi-finger electrode has at least two finger gate electrodes, a finger drain electrode, and a finger source electrode. The gate terminal electrode connects the finger gate electrodes of two adjoining cells in common. The drain terminal electrode connects the finger drain electrodes of two adjoining cells in common. The finger gate electrode of one cell of two adjoining cells and the finger gate electrode of another cell of the two adjoining cells cross perpendicularly. The gate terminal electrode and the drain terminal electrode are provided alternately in a region where the finger gate electrodes of the two adjoining cells cross.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: October 13, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kazutaka Takagi
  • Patent number: 9153717
    Abstract: A method for forming a backside illuminated photo-sensitive device includes forming a gradated sacrificial buffer layer onto a sacrificial substrate, forming a uniform layer onto the gradated sacrificial buffer layer, forming a second gradated buffer layer onto the uniform layer, forming a silicon layer onto the second gradated buffer layer, bonding a device layer to the silicon layer, and removing the gradated sacrificial buffer layer and the sacrificial substrate.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: October 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Yen-Chang Chu, Cheng-Ta Wu, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 9147690
    Abstract: An erasable programmable single-poly nonvolatile memory includes a substrate structure; a first PMOS transistor comprising a select gate, a first source/drain region, and a second source/drain region, wherein the select gate is connected to a select gate voltage, and the first source/drain region is connected to a source line voltage; a second PMOS transistor comprising the second source/drain region, a third source/drain region, and a floating gate, wherein the third source/drain region is connected to a bit line voltage and the first, second and third source/drain regions are constructed in a N-well region; and an erase gate region adjacent to the floating gate, wherein the erase gate region comprises a n-type source/drain region connected to an erase line voltage and a P-well region; wherein the N-well region and the P-well region are formed in the substrate structure.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: September 29, 2015
    Assignee: EMEMORY TECHNOLOGY INC.
    Inventors: Wei-Ren Chen, Te-Hsun Hsu, Wen-Hao Lee
  • Patent number: 9147835
    Abstract: The invention relates to the technical field of semiconductor memories, in particular to a tunnel transistor structure integrated with a resistance random access memory and a manufacturing method thereof. The tunnel transistor structure in the present invention comprises a semiconductor substrate, and a tunnel transistor and a resistance random access memory formed on the semiconductor substrate, wherein the gate dielectric layer of the tunnel transistor extends to the surface of a drain region of the tunnel transistor; the part of the gate dielectric layer on the surface of the drain region of the tunnel transistor forms the resistance-variable storage layer of the resistance random access memory.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: September 29, 2015
    Assignee: FUDAN UNIVERSITY
    Inventors: Xi Lin, Pengfei Wang, Qingqing Sun, Wei Zhang
  • Patent number: 9147677
    Abstract: Dual-tub junction-isolated voltage clamp devices and methods of forming the same are provided herein. The voltage clamp device can provide junction-isolated protection to low voltage circuitry connected between first and second high voltage interface pins. In certain implementations, a voltage clamp device includes a PNPN protection structure disposed in a p-well, a PN diode protection structure disposed in an n-well positioned adjacent the p-well, a p-type tub surrounding the p-well and the n-well, and an n-type tub surrounding the p-type tub. The p-type tub and the n-type tub provide junction isolation, the p-type tub can be electrically floating, and the n-type tub can be electrically connected to the second pin. The first and second pins can operate at a voltage difference below the junction isolation breakdown, and the second pin can operate with higher voltage than the first pin.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: September 29, 2015
    Assignee: ANALOG DEVICES GLOBAL
    Inventors: Javier Alejandro Salcedo, David J Clarke, Jonathan Glen Pfeifer
  • Patent number: 9117687
    Abstract: An integrated circuit containing a first plurality of MOS transistors operating in a low voltage range, and a second plurality of MOS transistors operating in a mid voltage range, may also include a high-voltage MOS transistor which operates in a third voltage range significantly higher than the low and mid voltage ranges, for example 20 to 30 volts. The high-voltage MOS transistor has a closed loop configuration, in which a drain region is surrounded by a gate, which is in turn surrounded by a source region, so that the gate does not overlap field oxide. The integrated circuit may include an n-channel version of the high-voltage MOS transistor and/or a p-channel version of the high-voltage MOS transistor. Implanted regions of the n-channel version and the p-channel version are formed concurrently with implanted regions in the first and second pluralities of MOS transistors.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: August 25, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Pinghai Hao, Sameer Pendharkar, Seetharaman Sridhar, Jarvis Jacobs
  • Patent number: 9112037
    Abstract: A transistor including an oxide semiconductor and having favorable operation characteristics is provided. Further, by using the transistor, a semiconductor having improved operation characteristics can be provided. In planar view, one of a source electrode and a drain electrode of the transistor is surrounded by a ring-shaped gate electrode. Further, in planar view, one of the source electrode and the drain electrode of the transistor is surrounded by a channel formation region. Accordingly, the source electrode is not electrically connected to the drain electrode through a parasitic channel generated in an end portion of an island-shaped oxide semiconductor layer.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: August 18, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Atsuo Isobe, Yuki Hata, Suguru Hondo
  • Patent number: 9110124
    Abstract: A magnetic sensor is provided with a channel of a semiconductor, a first insulating film and a metal body arranged opposite to each other with the channel in between, a ferromagnet provided on the first insulating film, a first reference electrode connected to the metal body, a second reference electrode connected to the metal body, a magnetic shield covering a portion opposed to the ferromagnet in the channel, and a second insulating film provided between the channel and the magnetic shield. The magnetic shield has a through hole extending toward the portion opposed to the ferromagnet in the channel.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: August 18, 2015
    Assignee: TDK CORPORATION
    Inventors: Tomoyuki Sasaki, Tohru Oikawa
  • Patent number: 9111960
    Abstract: Semiconductor devices with vertical channel transistors, the devices including semiconductor patterns disposed on a substrate, first gate patterns disposed between the semiconductor patterns on the substrate, a second gate pattern spaced apart from the first gate patterns by the semiconductor patterns, and conductive lines crossing the first gate patterns. The second gate pattern includes a first portion extending parallel to the first gate patterns and a second portion extending parallel to the conductive lines.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 18, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hui-Jung Kim, Yongchul Oh, Daeik Kim, Hyun-Woo Chung
  • Patent number: 9059052
    Abstract: Kerf areas are located between the integrated circuit chips on a wafer. Via chain test structures are located in the kerf areas or test chips. The via chain test structures comprise a first conductor in a first area of the wafer. First via chains are connected at individual points to the first conductor. Each of the first via chains comprises an open-ended electrical circuit beginning at the first conductor and ending in an insulated region of a second area of the wafer. The via chain test structures comprise a second conductor in the second area. Second via chains are connected at individual points to the second conductor. Each of the second via chains comprises an open-ended electrical circuit beginning at the second conductor and ending in an insulated region of the first area.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Fen Chen, Cathryn J. Christiansen, Roger A. Dufresne
  • Patent number: 9059055
    Abstract: According to one embodiment, a solid-state imaging device includes a first structure part, a second structure part, and a third structure part. The first structure part includes a first insulating body and a first photoelectric conversion part. The first photoelectric conversion part is periodically disposed in the first insulating body and selectively absorbs light in the first wavelength band. The second structure part includes a second insulating body and a second photoelectric conversion part. The second photoelectric conversion part is periodically disposed in the second insulating body and selectively absorbs light in the second wavelength band. The third structure part includes a third photoelectric conversion part. The third photoelectric conversion part absorbs light in a third wavelength band. When viewed in the light incidence direction, the first photoelectric conversion part, the second photoelectric conversion part, and the third photoelectric conversion part are disposed in this order.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: June 16, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yusaku Konno, Moto Yabuki, Naotada Okada
  • Patent number: 9054303
    Abstract: The present invention belongs to the technical field of semiconductor memories, in particular to a metal oxide semiconductor (MOS) transistor structure integrated with a resistance random access memory (RRAM). The MOS transistor structure comprises a MOS transistor and a RRAM formed on a substrate, wherein a gate dielectric layer of said MOS transistor extends to the surface of a drain region of said MOS transistor; and the part of the gate dielectric layer on the surface of the drain region of said MOS transistor faults a resistance-variable storage layer of said RRAM. In this invention, the high-quality dielectric layer of the MOS transistor and the resistance-variable storage layer of the RRAM are obtained by primary atomic layer deposition which integrates the RRAM and MOS transistor together without increasing steps.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: June 9, 2015
    Assignee: Fudan University
    Inventors: Xi Lin, Pengfei Wang, Qingqing Sun, Wei Zhang
  • Patent number: 9029913
    Abstract: A first silicon-germanium alloy layer is formed on a semiconductor substrate including silicon. A stack of a first silicon layer and a second silicon-germanium alloy layer is formed over a first region of the first silicon-germanium alloy layer, and a second silicon layer thicker than the first silicon layer is formed over a second region of the first silicon-germanium alloy layer. At least one first semiconductor fin is formed in the first region, and at least one second semiconductor fin is formed in the second region. Remaining portions of the first silicon layer are removed to provide at least one silicon-germanium alloy fin in the first region, while at least one silicon fin is provided in the second region. Fin field effect transistors can be formed on the at least one silicon-germanium alloy fin and the at least one silicon fin.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Henry K. Utomo, Kangguo Cheng, Ramachandra Divakaruni, Myung-Hee Na, Ravikumar Ramachandran, Huiling Shang
  • Patent number: 9000455
    Abstract: A shadow mask assembly includes a securing assembly configured to hold a substrate that is configured to hold a plurality of dies. The securing assembly includes a number of guide pins and a shadow mask comprising holes for the guide pins, said holes allowing the guide pins freedom of motion in one direction. The securing assembly includes a number of embedded magnets configured to secure the shadow mask to the securing assembly.
    Type: Grant
    Filed: March 10, 2013
    Date of Patent: April 7, 2015
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Ming-Shing Lee, Chyi-Shyuan Chern, Hsin-Hsien Wu, Yung-Chang Chen, Ming-Hua Lo, Chu-Ching Tsai
  • Patent number: 8916451
    Abstract: A method for wafer transfer includes forming a spreading layer, including graphene, on a single crystalline SiC substrate. A semiconductor layer including one or more layers is formed on and is lattice matched to the crystalline SiC layer. The semiconductor layer is transferred to a handle substrate, and the spreading layer is split to remove the single crystalline SiC substrate.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: December 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: Can Bayram, Jack O. Chu, Christos Dimitrakopoulos, Jeehwan Kim, Hongsik Park, Devendra K. Sadana
  • Patent number: 8872271
    Abstract: According to one embodiment, a pass gate provided between a data holding unit of an SRAM cell and a bit line, includes a first tunnel transistor and a first diode connected in series between the data holding unit and the bit line, and a second tunnel transistor and a second diode connected in series between the data holding unit and the bit line and connected in parallel to the first tunnel transistor and the first diode. Gate electrodes of the first tunnel transistor and the second tunnel transistor are connected to a word line. The first diode and the second diode have rectification in mutually opposite directions between the data holding unit and the bit line.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: October 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akira Hokazono
  • Patent number: 8686513
    Abstract: An IGBT die structure includes an auxiliary P well region. A terminal, that is not connected to any other IGBT terminal, is coupled to the auxiliary P well region. To accelerate IGBT turn on, a current is injected into the terminal during the turn on time. The injected current causes charge carriers to be injected into the N drift layer of the IGBT, thereby reducing turn on time. To accelerate IGBT turn off, charge carriers are removed from the N drift layer by drawing current out of the terminal. To reduce VCE(SAT), current can also be injected into the terminal during IGBT on time. An IGBT assembly involves the IGBT die structure and an associated current injection/extraction circuit. As appropriate, the circuit injects or extracts current from the terminal depending on whether the IGBT is in a turn on time or is in a turn off time.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: April 1, 2014
    Assignee: IXYS Corporation
    Inventor: Kyoung Wook Seok