Patents Examined by Eric Messersmith
  • Patent number: 9560984
    Abstract: A system analyzes neuro-response measurements including regional electroencephalography (EEG) measurements from subjects exposed to stimulus materials to determine locations in stimulus materials eliciting controlled attention and automatic attention. Additional stimulus materials are inserted into locations having salient attention attributes. In some examples, a challenging task is used to direct controlled attention onto a location and additional stimulus material is subtly presented in the location to benefit from automatic attention and salient attention measurements.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: February 7, 2017
    Assignee: The Nielsen Company (US), LLC
    Inventors: Anantha Pradeep, Robert T. Knight, Ramachandran Gurumoorthy
  • Patent number: 9549690
    Abstract: A system is configured to monitor the dead space fraction of a subject in a substantially ongoing manner, rather than only updating the dead space fraction of the subject if one or more blood gas parameters of the subject are measured. This may facilitate enhanced control over respiratory therapy being provided to the subject, may inform decisions about care of the subject, and/or may provide other enhancements.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: January 24, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Lara Brewer, Joseph Allen Orr
  • Patent number: 9538942
    Abstract: The invention relates to a medical sensor system (10a/10c) for detecting a feature (12a/12c) in a human or animal body (14a/14c), including a signal pick-up unit (16a/16c), which can be implanted in the animal and/or human body (14a/14c), and a signal processing unit (18a/18c), which is spatially separated from the signal pick-up unit (16a/16c) and which includes a transmitter (20a/20c) and a receiver (22a/22c). The transmitter (20a/20c) emits an alternating magnetic field (24a/24c) to act on the signal pick-up unit (16a/16c), and the receiver (22a/22c) receives a response signal (26a/26c) of the signal pick-up unit (16a/16c), which is generated by the magnetic interaction of the alternating magnetic field (24a/24c) with the signal pick-up unit (16a/16c).
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: January 10, 2017
    Assignee: BIOTRONIK SE & Co. KG
    Inventor: Jens Ulmer
  • Patent number: 9474453
    Abstract: Non-invasively measuring a physiological parameter by applying to a subject's body part a venous occlusion plethysmographic device including a first section having a first fluid chamber and at least a second region having a second fluid chamber to engage a first region of the body part and a second region of the body part, proximal of the first region; pressurizing the first chamber to a pressure sufficient to compensate for hydrostatic pressure added to the inherent venous pressure at the maximal vertical lowering level of the body part relative to the subject's heart level; intermittently raising and lowering the pressure in the second fluid chamber to a pressure above or equal to the pressure in the first chamber, but below the arterial blood pressure; measuring changes in volume of the first region of the body part; and utilizing the measured volume changes to provide a measure of the physiological parameter.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: October 25, 2016
    Assignee: Itamar Medical Ltd.
    Inventor: Robert P. Schnall
  • Patent number: 9474461
    Abstract: Provided herein are embodiments of a miniature wireless biomedical telemetry device along with systems and methods for its use. A miniature amplifier and transmitter allow recording of physiological signals from small animals, such as rats, mice and birds, as well as humans. The device is positioned externally and is easily replaceable, as is its battery, so surgical complications and other problem problems are minimized.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: October 25, 2016
    Assignee: UNIVERSITY OF UTAH RESEARCH FOUNDATION
    Inventors: John H. Fisher, F. Edward Dudek, Mark J. Lehmkuhle
  • Patent number: 9451913
    Abstract: Transdermal sampling and analysis device, method and system are provided for non-invasively and transdermally obtaining biological samples from a subject and determining levels of analytes of the obtained biological samples. The transdermal sampling and analysis device, method and system may cause disruption to the skin cells to create capillary-like channels from which biological samples may flow to the transdermal sampling and analysis device. The transdermal sampling and analysis device, method and system may collect the biological samples in a reservoir and transport the biological samples to a sensing chamber. The sensing chamber may contain at least two sensing electrodes coated with a biologically reactive element which reacts with the transported biological sample. The sensing chamber may be configured to mitigate the formation of air bubbles which may impede the transport and distribution of the biological sample across the entirety of the sensing chamber.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: September 27, 2016
    Assignee: TOUCHTEK LABS, LLC
    Inventors: John F. Currie, Joseph A. Marcanio, Joseph J. Vidalis
  • Patent number: 9451908
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: September 27, 2016
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Jacob S. Leach, Ying Li, Daiting Rong, Sean Saint, Peter C. Simpson, Mark Brister
  • Patent number: 9445747
    Abstract: An apnea detector is disclosed. A detector unit in communication with a capacitive type sensor is adapted to receive an electrical signal which is indicative of variable capacitance resulting from movement of a subject and to emit an alert signal when the received electrical signal is indicative of symptoms of apnea. In one embodiment, a detector unit is in communication with a curvature sensor adapted to detect a variable curvature of a subject body surface resulting from breathing patterns of a subject. The detector unit is attached to an article of clothing of the subject.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: September 20, 2016
    Assignee: DIAPERTECH LTD
    Inventors: Shaked Rahamim, Ori Elyada
  • Patent number: 9439602
    Abstract: A device for generating alerts for Hypo and Hyperglycemia Prevention from Continuous Glucose Monitoring (CGM) determines a dynamic risk based on both information of glucose level and a trend obtainable from a CGM signals. The device includes a display whose color depends on the DR (for example, red for high DR, green for low risk). When DR exceeds a certain threshold, alerts are generated to suggest the patient to pay attention to the current glucose reading and to its trend, both of which are shown on the display in numbers and symbols (e.g. an arrow with different slope or color).
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: September 13, 2016
    Assignee: DexCom, Inc.
    Inventors: Giovanni Sparacino, Claudio Cobelli, Stefania Guerra, Andrea Facchinetti, Michele Schiavon
  • Patent number: 9427176
    Abstract: An implantable medical device includes an integrated or connectable implantable three-dimensional acceleration sensor, and a ballistocardiogram (BCG) capturing unit that is connected or connectable to the acceleration sensor. The BCG evaluation unit processes an acceleration signal provided by the acceleration sensor and derives a BCG from the 3D accelerometer output signal. A BCG evaluation unit is connected to the BCG capturing unit, and is designed to evaluate a BCG provided by the BCG capturing unit and supply an output signal representing stroke volume.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: August 30, 2016
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Olaf Skerl, Michael Lippert, Jens Kirchner
  • Patent number: 9420965
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: August 23, 2016
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria Carr-Brendel, Paul V. Goode, Apurv U. Kamath, James P. Thrower, Ben Xavier
  • Patent number: 9380963
    Abstract: An integrated meter system for determining information related to an analyte of a fluid sample includes a meter including a housing and a plurality of test sensors. Each of the plurality of test sensors includes a penetrating member, a testing portion, and a channel. The channel is adapted to receive the fluid sample. The test sensors are removably located within the housing. At least one of the test sensors is removably connected to an adjacent test sensor. The integrated meter system also includes a test-sensor advancement mechanism that is configured to advance the test sensors.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: July 5, 2016
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Igor Gofman, Mitchel Stein
  • Patent number: 9375159
    Abstract: The invention relates to indicator dilution measurements of a central volume (V1) with a first site of injection (S1) upstream of the central volume (V1) a second site of detection (S2) of the diluted indicator downstream of the central volume (V1), wherein a first additional volume (V2) is defined between the first site (S1) and the central volume (V1) and a first additional branch (B2) is defined between the first site (S1) and the central volume (V1) and wherein a second additional volume (V3) is defined between the central volume (V1) and the second site (S2) and a second additional branch (B3) is defined between the central volume (V1) and the second site (S2) wherein a result of central volumetric parameters are corrected for the first and second additional volumes (V2, V3) and/or for the first and second additional branches (B2, B3).
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: June 28, 2016
    Assignee: Edwards Lifesciences IPRM AG
    Inventors: Ulf Borg, Reinhold Knoll, Frederic Michard, Ulrich Pfeiffer
  • Patent number: 9364173
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: June 14, 2016
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria Carr-Brendel, Paul V. Goode, Apurv U. Kamath, James P. Thrower, Ben Xavier
  • Patent number: 9357946
    Abstract: The present invention provides a direct sampler and detector for analytes found in exhaled breath condensate. Analytes in the breath condensate are detected instantaneously as they condense prior to reaching the sensor surface or condense directly on the sensor surface. Because the analysis or assay is performed immediately after patient exhalation, analyte stability is significantly improved providing accurate, reliable, consistent, and clinically applicable results. In certain embodiments, combined breath condensate/breath samplers and detectors are provided, enabling multiplexed analysis of condensed and vapor-phase analytes provided in a single sampling session. Breath is collected and directed to one or more subsystems. Within each subsystem, the breath portion is either condensed or prevented from condensing.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: June 7, 2016
    Assignee: Nanomix, Inc.
    Inventors: Bradley N. Johnson, Kanchan Joshi, Ying-Lan Chang, Ray Radtkey
  • Patent number: 9351668
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: May 31, 2016
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria E. Carr-Brendel, Paul V. Goode, Apurv Ullas Kamath, James Patrick Thrower, Ben Xavier
  • Patent number: 9339238
    Abstract: Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: May 17, 2016
    Assignee: DexCom, Inc.
    Inventors: Mohammad Ali Shariati, Apurv Ullas Kamath, J. Michael Dobbles, Aarthi Mahalingam
  • Patent number: 9339237
    Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: May 17, 2016
    Inventors: James Tyler Frix, Andrew Johnson, James Mitchell Frix, Robert Andrew Taylor
  • Patent number: 9320466
    Abstract: Devices and methods are provided for continuous measurement of an analyte concentration. The device can include a sensor having a plurality of sensor elements, each having at least one characteristic that is different from other sensor(s) of the device. In some embodiments, the plurality of sensor elements are each tuned to measure a different range of analyte concentration, thereby providing the device with the capability of achieving a substantially consistent level of measurement accuracy across a physiologically relevant range. In other embodiments, the device includes a plurality of sensor elements each tuned to measure during different time periods after insertion or implantation, thereby providing the sensor with the capability to continuously and accurately measure analyte concentrations across a wide range of time periods.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: April 26, 2016
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert J. Boock, Apurv Ullas Kamath, Matthew D. Wightlin, Michael J. Estes
  • Patent number: 9320465
    Abstract: A biochip and nanochip device, or a system of biochips, providing diagnostic testing, sensing and therapeutic functionality useful in diagnosis and treatment of a variety of physiological maladies.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: April 26, 2016
    Assignee: International Business Machines Corporation
    Inventor: Eric V. Kline