Patents Examined by Erik T Peterson
  • Patent number: 8853691
    Abstract: A transistor and a manufacturing method thereof are provided. The transistor includes a first gate, a second gate disposed on one side of the first gate, a first semiconductor layer, a second semiconductor layer, an oxide layer, a first insulation layer, a second insulation layer, a source, and a drain. The first semiconductor layer is disposed between the first and second gates; the second semiconductor layer is disposed between the first semiconductor layer and the second gate. The oxide layer is disposed between the first semiconductor layer and the second semiconductor layer. The first insulation layer is disposed between the first gate and the first semiconductor layer; the second insulation layer is disposed between the second gate and the second semiconductor layer. The source and the drain are disposed between the first insulation layer and the second insulation layer and respectively disposed on opposite sides of the oxide layer.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 7, 2014
    Assignee: E Ink Holdings Inc.
    Inventors: Chih-Hsiang Yang, Ted-Hong Shinn, Wei-Tsung Chen, Hsing-Yi Wu
  • Patent number: 8852975
    Abstract: The present invention relates to an array substrate for a fringe field switching (FFS) mode liquid crystal display device and a method for fabricating the same. The liquid crystal display device may include a gate line formed on the substrate; a data line crossed with the gate line to define a pixel region; a thin-film transistor (TFT) formed at an intersection of the gate and data line; an organic insulating layer formed to have an opening portion for exposing the TFT; a common electrode having an area formed at an upper portion of the organic insulating layer, and an auxiliary electrode pattern connected to the TFT through the opening portion; a passivation layer formed to expose the auxiliary electrode pattern connected to the TFT; and pixel electrodes electrically connected to the TFT through the exposed auxiliary electrode pattern.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: October 7, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: DongSu Shin, SeungKyu Choi, CheolHwan Lee
  • Patent number: 8853064
    Abstract: The present invention is directed to a method of manufacturing a substrate, which includes loading a base substrate into a reaction furnace; forming a buffer layer on the base substrate; forming a separation layer on the buffer layer; forming a semiconductor layer on the separation layer at least two; and separating the semiconductor layer from the base substrate via the separation layer through natural cooling by unloading the base substrate from the reaction furnace.
    Type: Grant
    Filed: October 21, 2012
    Date of Patent: October 7, 2014
    Assignee: Lumigntech Co., Ltd.
    Inventors: Hae Yong Lee, Young Jun Choi, Jin Hun Kim, Hyun soo Jang, Hea Kon Oh, Hyun Hee Hwang
  • Patent number: 8829483
    Abstract: This invention discloses a semiconductor device and its manufacturing method. According to the method, a stop layer is deposited on a step-shaped bottom electrode, and then a first insulating layer is deposited through a high aspect ratio process. A first chemical mechanical polishing is performed until the stop layer. A second chemical mechanical polishing is then performed to remove the upper horizontal portion of the bottom electrode. Then, a phase-change material can be formed on the vertical portion of the bottom electrode to form a phase-change element. Through arranging a stop layer, the chemical mechanical polishing process is divided into two stages. Thus, during the second chemical mechanical polishing process preformed on the bottom electrode, polishing process can be precisely controlled to avoid the unnecessary loss of the bottom electrode.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: September 9, 2014
    Assignee: Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Wanchun Ren
  • Patent number: 8809166
    Abstract: Embodiments of methods and systems for processing a semiconductor wafer are described. In one embodiment, a method for processing a semiconductor wafer involves performing laser stealth dicing on the semiconductor wafer to form a stealth dicing layer within the semiconductor wafer and after performing laser stealth dicing, cleaning the semiconductor wafer from a back-side surface of the semiconductor wafer with a blade to remove at least a portion of the stealth dicing layer. Other embodiments are also described.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: August 19, 2014
    Assignee: NXP B.V.
    Inventors: Hartmut Buenning, Sascha Moeller, Martin Lapke, Guido Albermann, Thomas Rohleder
  • Patent number: 8802545
    Abstract: The present invention provides a method for plasma dicing a substrate. The method comprising providing a process chamber having a wall; providing a plasma source adjacent to the wall of the process chamber; providing a work piece support within the process chamber; placing the substrate onto a support film on a frame to form a work piece work piece; loading the work piece onto the work piece support; providing a cover ring disposed above the work piece; generating a plasma through the plasma source; and etching the work piece through the generated plasma.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: August 12, 2014
    Assignee: Plasma-Therm LLC
    Inventors: Chris Johnson, David Johnson, David Pays-Volard, Linnell Martinez, Russell Westerman, Gordon M. Grivna
  • Patent number: 8802552
    Abstract: A method for manufacturing a MOSFET includes the steps of: forming a gate oxide film on an active layer, forming a gate electrode on the gate oxide film, forming a source contact electrode in ohmic contact with the active layer, and forming an interlayer insulating film made of silicon dioxide so as to cover the gate electrode after the source contact electrode is formed. The step of forming a source contact electrode includes the steps of forming a metal layer including aluminum so as to be in contact with the active layer, and alloying the metal layer.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: August 12, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Taku Horii, Takeyoshi Masuda
  • Patent number: 8796049
    Abstract: Methods and systems to method to determine an adhesion force of an underfill material to a chip assembled in a flip-chip module are provided. A method includes forming a flip-chip module including a chip connected to a substrate with a layer of underfill material adhered to the chip and the substrate. The method also includes forming a block from the layer of underfill material. The method further includes measuring a force required to shear the block from a surface of the flip-chip module.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: August 5, 2014
    Assignee: International Business Machines Corporation
    Inventors: Maxime Cadotte, Marie-Claude Paquet, Julien Sylvestre
  • Patent number: 8796154
    Abstract: The present invention provides a method for plasma dicing a substrate. The method comprising providing a process chamber having a wall; providing a plasma source adjacent to the wall of the process chamber; providing a work piece support within the process chamber; placing the substrate onto a support film on a frame to form a work piece work piece; loading the work piece onto the work piece support; providing a cover ring disposed above the work piece; generating a plasma through the plasma source; and etching the work piece through the generated plasma.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: August 5, 2014
    Assignee: Plasma-Therm LLC
    Inventors: Chris Johnson, David Johnson, David Pays-Volard, Linnell Martinez, Russell Westerman, Gordon M. Grivna
  • Patent number: 8785332
    Abstract: The present invention provides a method for plasma dicing a substrate. The method comprising providing a process chamber having a wall; providing a plasma source adjacent to the wall of the process chamber; providing a work piece support within the process chamber; placing the substrate onto a support film on a frame to form a work piece work piece; loading the work piece onto the work piece support; providing a cover ring disposed above the work piece; generating a plasma through the plasma source; and etching the work piece through the generated plasma.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: July 22, 2014
    Assignee: Plasma-Therm LLC
    Inventors: Chris Johnson, David Johnson, Linnell Martinez, David Pays-Volard, Rich Gauldin, Russell Westerman, Gordon M. Grivna
  • Patent number: 8778806
    Abstract: The present invention provides a method for plasma dicing a substrate. The method comprising providing a process chamber having a wall; providing a plasma source adjacent to the wall of the process chamber; providing a work piece support within the process chamber; placing the substrate onto a support film on a frame to form a work piece work piece; loading the work piece onto the work piece support; providing a cover ring disposed above the work piece; generating a plasma through the plasma source; and etching the work piece through the generated plasma.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: July 15, 2014
    Assignee: Plasma-Therm LLC
    Inventors: Chris Johnson, David Johnson, David Pays-Volard, Linnell Martinez, Russell Westerman, Gordon M. Grivna
  • Patent number: 8778081
    Abstract: Systems and methods for depositing complex thin-film alloys on substrates are provided. In particular, systems and methods for the deposition of thin-film Cd1-xMxTe ternary alloys on substrates using a stacked-source sublimation system are provided, where M is a metal such as Mg, Zn, Mn, and Cu.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: July 15, 2014
    Assignee: Colorado State University Research Foundation
    Inventors: Walajabad S. Sampath, Pavel S. Kobyakov, Kevin E. Walters, Davis R. Hemenway
  • Patent number: 8765511
    Abstract: A method for manufacturing a semiconductor device including at least one of the following steps: (1) Forming a lower electrode pattern on/over a substrate. (2) Forming a first interlayer insulating layer on the lower electrode pattern. (3) Forming an upper electrode pattern on the first interlayer insulating layer. (4) Forming a passivation layer on a side of the upper electrode pattern. (5) Forming a second interlayer insulating layer on the upper electrode pattern. (6) Etching the second interlayer insulating layer to form a cavity which exposes the passivation layer. (7) Forming a contact ball in the cavity.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 1, 2014
    Assignee: Dongbu HiTek Co., Ltd.
    Inventors: Chung Kyung Jung, Sung Wook Joo
  • Patent number: 8741717
    Abstract: Methods for fabricating integrated circuits are provided. One method includes forming first and second FET trenches in an interlayer dielectric material on a semiconductor substrate. The first FET trench is partially filled with a first work function metal to define an inner cavity in the first FET trench. The first work function metal is a N-type work function metal or a P-type work function metal. The N-type work function metal is selected from the group consisting of titanium, tantalum, hafnium, ytterbium silicide, erbium silicide, and titanium silicide. The P-type work function metal is selected from the group consisting of cobalt, nickel, and tungsten silicide. The inner cavity and the second FET trench are filled with a second work function metal to form corresponding metal gate structures. The second work function metal is the other of the N-type work function metal or the P-type work function metal.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: June 3, 2014
    Assignee: Globalfoundries, Inc.
    Inventor: Kim Hoon
  • Patent number: 8728912
    Abstract: The present invention is directed to a method for manufacturing an SOI wafer, the method by which treatment that removes the outer periphery of a buried oxide film to obtain a structure in which a peripheral end of an SOI layer of an SOI wafer is located outside a peripheral end of the buried oxide film, and, after heat treatment is performed on the SOI wafer in a reducing atmosphere containing hydrogen or an atmosphere containing hydrogen chloride gas, an epitaxial layer is formed on a surface of the SOI layer. As a result, there is provided a method that can manufacture an SOI wafer having a desired SOI layer thickness by performing epitaxial growth without allowing a valley-shaped step to be generated in an SOI wafer with no silicon oxide film in a terrace portion, the SOI wafer fabricated by an ion implantation delamination method.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: May 20, 2014
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Hiroji Aga, Isao Yokokawa, Satoshi Oka
  • Patent number: 8722491
    Abstract: Embodiments of the present invention relate to approaches for forming RMG FinFET semiconductor devices using a low-resistivity metal (e.g., W) as an alternate gap fill metal. Specifically, the semiconductor will typically comprise a set (e.g., one or more) of dielectric stacks formed over a substrate to create one or more trenches/channels (e.g., short/narrow and/or long/wide trenches/channels). A work function layer (e.g., TiN) will be provided over the substrate (e.g., in and around the trenches). A low-resistivity metal gate layer (e.g., W) may then be deposited (e.g., via chemical vapor deposition) and polished (e.g., via chemical-mechanical polishing). Thereafter, the gate metal layer and the work function layer may be etched after the polishing to provide a trench having the etched gate metal layer over the etched work function layer along a bottom surface thereof.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: May 13, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Chang Seo Park, Vimal K. Kamineni
  • Patent number: 8716066
    Abstract: A method of forming a packaged semiconductor device includes loading an array of package sites in position for saw singulation, saw singulating the array of package sites, and performing a non-electrolytic plating operation on exposed lead tips of individual packages from the array of package sites as the array of package sites is saw singulated.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: May 6, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Leo M. Higgins, III
  • Patent number: 8716151
    Abstract: The present disclosure relates to a method of fabricating semiconductor devices. In the method provided by the present invention, by filling with diblock copolymer a recess of an interlayer dielectric layer naturally formed between two gate lines and then performing a self-assembly process of the diblock copolymer, a small-sized contact hole precisely aligned with an doped area can be formed, and thus misalignment between the contact hole and the doped area can be eliminated or alleviated.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 6, 2014
    Assignee: Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Haiyang Zhang, Dongjiang Wang
  • Patent number: 8716125
    Abstract: Embodiments of the present invention provide methods of in-situ vapor phase deposition of self-assembled monolayers as copper adhesion promoters and diffusion barriers. A copper region is formed in a dielectric layer. A diffusion barrier comprising a self-assembled monolayer is deposited over the copper region. A capping layer is deposited over the self-assembled monolayer. In some embodiments, the capping layer and self-assembled monolayer are deposited in the same process chamber.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: May 6, 2014
    Assignee: Globalfoundries Inc.
    Inventor: Jinhong Tong
  • Patent number: 8716094
    Abstract: Approaches for forming a FinFET device using double patterning memorization techniques are provided. Specifically, a device will initially be formed by defining a set of fins, depositing a poly-silicon layer, and depositing a hardmask. Thereafter, a front end of the line (FEOL) lithography-etch, lithography-etch (LELE) process will be performed to form a set of trenches in the device. The set of trenches will be filled with an oxide layer that is subsequently polished. Thereafter, the device is selectively etched to yield a (e.g., poly-silicon) gate pattern.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: May 6, 2014
    Assignee: Global Foundries Inc.
    Inventors: Chang Seo Park, Linus Jang, Jin Cho