Patents Examined by Erin Bergner
  • Patent number: 9777395
    Abstract: An apparatus for growing a silicon single crystal according to embodiments includes a chamber including a crucible accommodating silicon melt; a support shaft rotating and lifting the crucible while supporting the crucible; a main heater part for applying heat to the crucible side, the heater disposed beside the crucible; an upper heat insulation member located over the crucible; and upper heater parts located at a lower end portion of the upper heat insulation member, wherein the upper heater parts have diameters different from each other with respect to a center of the crucible, and include a plurality of ring-shaped heaters which are spaced apart from each other. Due to the individually controllable upper heater parts, a uniform thermal environment can be provided for silicon melt accommodated in a crucible, and localized solidification of the silicon melt can be prevented so that the quality of a silicon single crystal and the ingot pulling speed can be readily controlled.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: October 3, 2017
    Assignee: LG Siltron, Inc.
    Inventor: Su-In Jeon
  • Patent number: 9777393
    Abstract: Process for fabricating a thin single-crystalline layer n, including steps of: a) providing a support substrate n, b) placing a seed sample n, c) depositing a thin layer n so as to form an initial interface region n including a proportion of seed sample n and a proportion of thin layer n, the proportion of seed sample n decreasing from the first peripheral part n towards the second peripheral part n, e) providing an energy input to the initial interface region n contiguous to the first peripheral part n so as to liquefy a portion n of the thin layer and form a solid/liquid interface region n, and f) gradually moving the energy input away from the seed sample n so as to solidify the portion n so as to gradually move the solid/liquid interface region n.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: October 3, 2017
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventor: Lamine Benaissa
  • Patent number: 9776875
    Abstract: The present invention relates to a method for producing graphene on a face-centered cubic metal catalyst having a plane oriented in one direction, and more particularly to a method of producing graphene on a metal catalyst having the (100) or (111) crystal structure and a method of producing graphene using a catalyst metal foil having a single orientation, obtained by electroplating a metal catalyst by a pulse wave current and annealing the metal catalyst. The invention also relates to a method of producing graphene using a metal catalyst, and more particularly to a method of producing graphene, comprising the steps of: alloying a metal catalyst with an alloying element; forming step structures on the metal catalyst substrate in an atmosphere of a gas having a molecular weight of carbon; and supplying hydrocarbon and hydrogen gases to the substrate. On unidirectionally oriented metal catalyst prepared according to the present invention, graphene can be grown uniformly and epitaxially.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: October 3, 2017
    Assignee: SRC Corporation
    Inventors: Kang Hyung Kim, Kwan Sub Maeng, Chol Woo Park, Se Won Cha, Se Youn Hong, Byung He Hong, Myung Hee Jung, Kyung Eun Kim, Su Beom Park
  • Patent number: 9777396
    Abstract: A method for producing a crystal, according to the present invention, where the lower surface of a seed crystal which is rotatably arranged and made of silicon carbide is brought into contact with a solution of silicon solvent containing carbon in a crucible which is rotatably arranged and the seed crystal is pulled up and a crystal of silicon carbide is grown from the solution on the lower surface of the seed crystal, comprising the steps of bringing the lower surface of the seed crystal into contact with the solution in a contact step, rotating the seed crystal in a seed crystal rotation step, rotating the crucible in a crucible rotation step, and stopping rotation of the crucible, while the seed crystal is rotated in the state in which the lower surface of the seed crystal is in contact with the solution, in a deceleration step.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: October 3, 2017
    Assignee: KYOCERA CORPORATION
    Inventors: Chiaki Domoto, Katsuaki Masaki, Yutaka Kuba, Daisuke Ueyama, Kouji Miyamoto, Yuuichiro Hayashi
  • Patent number: 9778620
    Abstract: Method for creating a flexible, multistable element (5): a silicon component (S) is etched with a beam (P) connecting two ends (E1, E2) of a rigid mass (MU) having a cross-section more than ten times that of said beam (P), SiO2 is grown at 1100° C. for a duration adjusted to obtain, on said beam (P), a first ratio (RA) of more than 1 between the section of a first peripheral layer (CP1) of SiO2, and that of a first silicon core (A1), and, on said mass (MU), a second ratio (RB) between the section of a second peripheral layer (CP2) of SiO2 and that of a second silicon core (A2), which is less than a hundredth of said first ratio (RA); cooling to ambient temperature is performed, to deform said beam (P) by buckling when said mass (MU) cools and contracts more than said beam (P).
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: October 3, 2017
    Assignee: NIVAROX-FAR S.A.
    Inventors: Marc Stranczl, Thierry Hessler
  • Patent number: 9752253
    Abstract: Disclosed herein is an epitaxial growth apparatus for growing an epitaxial layer on a surface of a wafer. The apparatus includes: a chamber in which the wafer is housed; an upper lamp group that includes a plurality of heating lamps arranged in a ring above the chamber; a lower lamp group that includes a plurality of heating lamps provided below the chamber; a reflection member that is provided inside the ring of the upper lamp group, the reflection member having a substantially cylindrical shape; and an additional reflection member that is provided inside the reflection member, the additional reflection member including a reflection surface that is substantially parallel to the surface of the wafer. The additional reflection member is provided in such a way as to close at least part of an opening of a lower end portion of the reflection member.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: September 5, 2017
    Assignee: SUMCO CORPORATION
    Inventors: Kan Yoshitake, Kimitaka Okamoto, Haruki Shoji
  • Patent number: 9724666
    Abstract: An apparatus to contain the reaction vessel in which gallium nitride crystals (henceforth referred to as bulk crystals) can be grown using the ammonothermal method at high pressure and temperature is disclosed. The apparatus provides adequate containment in all directions, which, for a typical cylindrical vessel, can be classified as radial and axial. Furthermore, depending on the specifics of the design parameters, the apparatus is capable of operating at a temperature up to 1,200 degrees Celsius, a pressure up to 2,000 MPa, and for whatever length of time is necessary to grow satisfactory bulk crystals. The radial constraint in the current disclosure is provided by using several stacked composite rings. The design of the apparatus is scalable to contain reaction volumes larger than 100 cubic centimeters.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: August 8, 2017
    Assignee: Soraa, Inc.
    Inventors: Pakalapati Tirumala Rajeev, Douglas W. Pocius, Mark P. D'Evelyn
  • Patent number: 9708731
    Abstract: A method of producing a silicon single crystal is provided. The method may include taking a real image of a heat shield including a circular opening and a mirror image of the heat shield reflected on a surface of the silicon melt, measuring a spacing between the real image and the mirror image, calculating a position of the surface of the silicon melt, taking an image of a bright zone that appears in a vicinity of an interface between the silicon melt and the silicon single crystal, calculating a position of the surface of the silicon melt based on a center position of the silicon single crystal determined from the image of the bright zone, and controlling the position of the surface of the silicon melt during a pulling of the silicon single crystal while referring to data of the calculated positions of the surface of the silicon melt.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: July 18, 2017
    Assignee: SUMCO CORPORATION
    Inventors: Keiichi Takanashi, Ken Hamada
  • Patent number: 9688912
    Abstract: A method of etching a semiconductor substrate, having the steps of: providing a semiconductor substrate having a first layer containing Ti and a second layer containing at least one of Cu, SiO, SiN, SiOC and SiON; providing an etching liquid containing, in an aqueous medium, a basic compound composed of an organic amine compound and an oxidizing agent, the etching liquid having a pH from 7 to 14; and applying the etching liquid to the semiconductor substrate to selectively etch the first layer of the semiconductor substrate.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: June 27, 2017
    Assignee: FUJIFILM Corporation
    Inventor: Tetsuya Kamimura
  • Patent number: 9691607
    Abstract: Disclosed is a process for producing an epitaxial single-crystal silicon carbide substrate by epitaxially growing a silicon carbide film on a single-crystal silicon carbide substrate by chemical vapor deposition. The step of crystal growth in the process comprises a main crystal growth step, which mainly occupies the period of epitaxial growth, and a secondary crystal growth step, in which the growth temperature is switched between a set growth temperature (T0) and a set growth temperature (T2) which are respectively lower and higher than a growth temperature (T1) used in the main crystal growth step. The basal plane dislocations of the single-crystal silicon carbide substrate are inhibited from being transferred to the epitaxial film. Thus, a high-quality epitaxial film is formed.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: June 27, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Takashi Aigo, Hiroshi Tsuge, Taizo Hoshino, Tatsuo Fujimoto, Masakazu Katsuno, Masashi Nakabayashi, Hirokatsu Yashiro
  • Patent number: 9683308
    Abstract: Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include removing contaminants disposed on the substrate surface using a plasma process, and then cleaning the substrate surface by use of a remote plasma assisted dry etch process.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: June 20, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Christopher S. Olsen, Theresa K. Guarini, Jeffrey Tobin, Lara Hawrylchak, Peter Stone, Chi Wei Lo, Saurabh Chopra
  • Patent number: 9656350
    Abstract: A method for selectively removing portions of a protective coating from a substrate, such as an electronic device, includes removing portions of the protective coating from the substrate. The removal process may include cutting the protective coating at specific locations, then removing desired portions of the protective coating from the substrate, or it may include ablating the portions of the protective coating that are to be removed. Coating and removal systems are also disclosed.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: May 23, 2017
    Assignee: HZO, Inc.
    Inventors: David J. Astle, Tyler C. Child, Vimal K. Kasagani, Cameron L. Loose, Blake L. Stevens, Max E. Sorenson
  • Patent number: 9657411
    Abstract: Disclosed is a single-crystal growth apparatus including a chamber, a crucible provided in the chamber and configured to accommodate a melt that is a raw material for single-crystal growth, a heater disposed between the crucible and a side wall of the chamber and heating the crucible, and a crucible screen disposed on an upper end of the crucible, and the crucible screen has a bending member reflecting a radiant heat generated from the melt in the crucible to inside wall of the crucible.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: May 23, 2017
    Assignee: LG Siltron Incorporated
    Inventors: Chang Youn Lee, Do Won Song, Jun Hyuk Choi, Jin Ho Son, Cheol Hwan Kim
  • Patent number: 9650723
    Abstract: Large area seed crystals for ammonothermal GaN growth are fabricated by deposition or layer transfer of a GaN layer on a CTE-matched handle substrate. The sides and back of the handle substrate are protected from the ammonothermal growth environment by a coating comprising an adhesion layer, a diffusion barrier layer, and an inert layer. A patterned mask, also comprising an adhesion layer, a diffusion barrier layer, and an inert layer, may be provided over the GaN layer to allow for reduction of the dislocation density by lateral epitaxial growth.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: May 16, 2017
    Assignee: Soraa, Inc.
    Inventors: Mark P. D'Evelyn, Wenkan Jiang, Derrick S. Kamber, Rajeev T. Pakalapati, Michael R. Krames
  • Patent number: 9653264
    Abstract: Plasma processing apparatus and methods are disclosed. Embodiments of the present disclosure include a processing chamber having an interior space operable to receive a process gas, a substrate holder in the interior of the processing chamber operable to hold a substrate, and at least one dielectric window. A metal shield is disposed adjacent the dielectric window. The metal shield can have a peripheral portion and a central portion. The processing apparatus includes a primary inductive element disposed external to the processing chamber adjacent the peripheral portion of the metal shield. The processing apparatus can further include a secondary inductive element disposed between the central portion of the metal shield and the dielectric window. The primary and secondary inductive elements can perform different functions, can have different structural configurations, and can be operated at different frequencies.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: May 16, 2017
    Assignee: Mattson Technology, Inc.
    Inventors: Vladimir Nagorny, Dongsoo Lee, Andreas Kadavanich
  • Patent number: 9644285
    Abstract: Methods of depositing compound semiconductor materials on one or more substrates include metering and controlling a flow rate of a precursor liquid from a precursor liquid source into a vaporizer. The precursor liquid may comprise at least one of GaCl3, InCl3, and AlCl3 in a liquid state. The precursor liquid may be vaporized within the vaporizer to form a first precursor vapor. The first precursor vapor and a second precursor vapor may be caused to flow into a reaction chamber, and a compound semiconductor material may be deposited on a surface of a substrate within the reaction chamber from the precursor vapors. Deposition systems for performing such methods include devices for metering and/or controlling a flow of a precursor liquid from a liquid source to a vaporizer, while the precursor liquid remains in the liquid state.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: May 9, 2017
    Assignee: SOITEC
    Inventor: Ronald Thomas Bertram, Jr.
  • Patent number: 9620410
    Abstract: Methods for processing a microelectronic topography include selectively etching a layer of the topography using an etch solution which includes a fluid in a supercritical or liquid state. In some embodiments, the etch process may include introducing a fresh composition of the etch solution into a process chamber while simultaneously venting the chamber to inhibit the precipitation of etch byproducts. A rinse solution including the fluid in a supercritical or liquid state may be introduced into the chamber subsequent to the etch process. In some cases, the rinse solution may include one or more polar cosolvents, such as acids, polar alcohols, and/or water mixed with the fluid to help inhibit etch byproduct precipitation. In addition or alternatively, at least one of the etch solution and rinse solution may include a chemistry which is configured to modify dissolved etch byproducts within an ambient of the topography to inhibit etch byproduct precipitation.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: April 11, 2017
    Assignee: Lam Research Corporation
    Inventors: Mark I. Wagner, James P. DeYoung
  • Patent number: 9613806
    Abstract: A NAND flash memory array is initially patterned by forming a plurality of sidewall spacers according along sides of patterned portions of material. The pattern of sidewall spacers is then used to form a second pattern of hard mask portions including first hard mask portions defined on both sides by sidewall spacers and second hard mask portions defined on only one side by sidewall spacers.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: April 4, 2017
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Jongsun Sel, Tuan Duc Pham, Mun Pyo Hong
  • Patent number: 9586836
    Abstract: By means of a series of wet multistage oxidation process comprising: Step 1 for adding an alkaline reagent to an aqueous solution of a manganese compound containing a divalent manganese thereby precipitating a manganese hydroxide; Step 2 for adding an aqueous hydrogen peroxide while keeping the temperature of the water of the aqueous solution comprising the manganese hydroxide at room temperature thereby converting into a manganese oxide; and also Step 3 for adding a dilute acid to the manganese oxide in a state where the water is coexisting, a nanometer-sized manganese dioxide having a ramsdellite-type crystal structure is obtained.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 7, 2017
    Assignee: KYOTO UNIVERSITY
    Inventors: Hideki Koyanaka, Masahiko Tsujimoto
  • Patent number: 9580818
    Abstract: The present invention relates to an etching solution for a multilayer thin film containing a copper layer and a molybdenum layer, and a method of etching a multilayer thin film containing a copper layer and a molybdenum layer using the etching solution. There are provided an etching solution for a multilayer thin film containing a copper layer and a molybdenum layer, including (A) an organic acid ion supply source containing two or more carboxyl groups and one or more hydroxyl groups in a molecule thereof, (B) a copper ion supply source and (C) an ammonia and/or ammonium ion supply source, the etching solution having a pH value of from 5 to 8, and an etching method using the etching solution.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: February 28, 2017
    Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Satoshi Tamai, Satoshi Okabe, Masahide Matsubara, Kunio Yube