Patents Examined by Ernest Allen, III
  • Patent number: 10217665
    Abstract: A semiconductor device includes a first pillar-shaped semiconductor layer formed on a semiconductor substrate; a first first-conductivity-type semiconductor layer formed in the first pillar-shaped semiconductor layer; a third first-conductivity-type semiconductor layer formed in the first pillar-shaped semiconductor layer and located at a higher position than the first first-conductivity-type semiconductor layer; a first gate insulating film formed so as to surround a region of the first pillar-shaped semiconductor layer sandwiched between the first first-conductivity-type semiconductor layer and the third first-conductivity-type semiconductor layer; a first gate formed so as to surround the first gate insulating film; a second gate insulating film formed so as to surround a region of the first pillar-shaped semiconductor layer sandwiched between the first first-conductivity-type semiconductor layer and the third first-conductivity-type semiconductor layer; and a second gate formed so as to surround the secon
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: February 26, 2019
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 10043850
    Abstract: An HV-LED module having 3D light-emitting structure and a method for manufacturing the HV-LED module are disclosed. The HV-LED module has at least two stacked parts of substage LEDs that each have an independent light-emitting structure and are bonded in a staggered pattern, and the substage LEDs are connected in series to form the 3D light-emitting structure, thereby significantly increasing light-emitting power per unit area, downsizing a high-voltage chip module using it by nearly two times, and effectively reducing packaging costs for the HV-LED module.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: August 7, 2018
    Assignee: Xiamen Changelight Co., Ltd.
    Inventors: Zhiwei Lin, Kaixuan Chen, Yong Zhang, Xiangjing Zhuo, Wei Jiang, Tianzu Fang, Yinqiao Zhang, Xiangwu Wang
  • Patent number: 10002896
    Abstract: Infrared radiation micro device, cover for such a device and method for its fabrication, the device comprising a substrate and a cover and an infrared radiation detecting, emitting or reflecting infrared micro unit, the infrared micro unit being arranged in a cavity defined between the substrate and the cover, the cover comprising an antireflective surface texture to enhance the transmissibility of infrared radiation, wherein a distance frame formed in an additive process on the substrate side of the cover and/or the cover side of the substrate is arranged between substrate and cover.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: June 19, 2018
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., ULIS SAS
    Inventors: Wolfgang Reinert, Jochen Quenzer, Sebastien Tinnes, Cécile Roman
  • Patent number: 9978844
    Abstract: The present disclosure relates to a high electron mobility transistor compatible power lateral field-effect rectifier (L-FER) device. In some embodiments, the rectifier device has an electron supply layer located over a layer of semiconductor material at a position between an anode terminal and a cathode terminal. A layer of doped III-N semiconductor material is disposed over the electron supply layer. A passivation layer is located over the electron supply layer and the layer of doped III-N semiconductor material. A gate structure is disposed over the layer of doped III-N semiconductor material and the passivation layer. The layer of doped III-N semiconductor material modulates the threshold voltage of the rectifier device, while the passivation layer improves reliability of the L-FER device by mitigating current degradation due to high-temperature reverse bias (HTRB) stress.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: May 22, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: King-Yuen Wong, Ming-Wei Tsai, Han-Chin Chiu
  • Patent number: 9911750
    Abstract: Semiconductor memory devices may include a semiconductor substrate, a first stack disposed on the semiconductor substrate and a second stack disposed on the first stack. The first stack may include a plurality of first word lines with a plurality of first line pads stacked in a stair form, and the second stack may include a plurality of second word lines with a plurality of second line pads stacked in a stair form. The second stack may be shifted on the first stack such that sides of the plurality of first word line pads are exposed.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: March 6, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Jaegoo Lee
  • Patent number: 9831164
    Abstract: A semiconductor device includes a via structure and a conductive structure. The via structure has a surface with a planar portion and a protrusion portion. The conductive structure is formed over at least part of the planar portion and not over at least part of the protrusion portion of the via structure. For example, the conductive structure is formed only onto the planar portion and not onto any of the protrusion portion for forming high quality connection between the conductive structure and the via structure.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: November 28, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-jin Moon, Pil-kyu Kang, Dae-lok Bae, Gil-heyun Choi, Byung-lyul Park, Dong-chan Lim, Deok-young Jung
  • Patent number: 9825096
    Abstract: According to one embodiment, a resistance change memory includes a first conductive line, a second conductive line provided above the first conductive line, and extending in a first direction, a third conductive line extending in a second direction intersecting the first direction, a select transistor provided between the first and third conductive lines, and a resistance change layer provided between the second and third conductive lines.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: November 21, 2017
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Kensuke Ota, Masumi Saitoh
  • Patent number: 9818918
    Abstract: An LED package structure includes a carrier mounted with a plurality of LED chips, a first glue-layer, a second glue-layer and an encapsulation resin filled within the first and the second glue-layers. The first glue-layer is formed on a top surface of the carrier and has a thin-film structure which is substantially flat on a top surface thereof. The second glue-layer is stacked on the first glue-layer. The second glue-layer has a height higher than that of the first glue-layer. The second glue-layer has a volume greater than that of the first glue-layer. The present invention also provides a method of LED package structure to stably produce a dam structure with uniform shape and high ratio of height/width.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: November 14, 2017
    Assignees: LITE-ON ELECTRONICS (GUANGZHOU) LIMITED, LITE-ON TECHNOLOGY CORPORATION
    Inventor: Kuo-Ming Chiu
  • Patent number: 9806158
    Abstract: The present disclosure relates to a high electron mobility transistor compatible power lateral field-effect rectifier device. In some embodiments, the rectifier device has an electron supply layer located over a layer of semiconductor material at a position between an anode terminal and a cathode terminal. A layer of doped III-N semiconductor material is disposed over the electron supply layer. A layer of gate isolation material is located over the layer of doped III-N semiconductor material. A gate structure is disposed over layer of gate isolation material, such that the gate structure is separated from the electron supply layer by the layer of gate isolation material and the layer of doped III-N semiconductor material. The layer of doped III-N semiconductor material modulates the threshold voltage of the rectifier device, while the layer of gate isolation material provides a barrier that gives the rectifier device a low leakage.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: October 31, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: King-Yuen Wong, Yu-Syuan Lin, Chih-Wen Hsiung
  • Patent number: 9711403
    Abstract: An embodiment of the invention provides a method for forming a chip package which includes: providing a substrate having a first surface and a second surface, wherein at least two conducting pads are disposed on the first surface of the substrate; partially removing the substrate from the second surface of the substrate to form at least two holes extending towards the first surface, wherein the holes correspondingly and respectively align with one of the conducting pads; after the holes are formed, partially removing the substrate from the second substrate to form at least a recess extending towards the first surface, wherein the recess overlaps with the holes; forming an insulating layer on a sidewall and a bottom of the trench and on sidewalls of the holes; and forming a conducting layer on the insulating layer, wherein the conducting layer electrically contacts with one of the conducting pads.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: July 18, 2017
    Assignee: XINTEC INC.
    Inventors: Chien-Hui Chen, Ming-Kun Yang, Tsang-Yu Liu, Yen-Shih Ho
  • Patent number: 9698270
    Abstract: A semiconductor device includes a substrate having a fin structure, the fin structure having a height in a substantially perpendicular direction to the substrate, and having consecutive upper and lower portions along the height, the lower portion being closer to the substrate than the upper portion. The semiconductor device further includes a gate structure wrapping around a portion of the fin structure, the gate structure having a gate dielectric layer disposed around the fin structure, and a gate electrode layer disposed over the gate dielectric layer. The gate electrode layer includes a first gate metal layer formed along both sides of the lower portion of the fin structure, the first gate metal layer having a first workfunction, and a second gate metal layer formed disposed over the first gate metal layer and wrapped around the upper portion of the fin structure, the second gate metal layer having a second workfunction. The first and the second workfunctions are different.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: July 4, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jean-Pierre Colinge, Wen-Hsing Hsieh
  • Patent number: 9685394
    Abstract: An electronic device includes a semiconductor substrate, an insulating material-filled layer and a vertical conductor. The semiconductor substrate has a vertical hole extending in a thickness direction thereof. The insulating material-filled layer is a ring-shaped layer filled in the vertical hole for covering an inner periphery thereof and includes an organic insulating material or an inorganic insulating material mainly of a glass and a nanocomposite ceramic. The nanocomposite ceramic has a specific resistance of greater than 1014 ?·cm at room temperature and a relative permittivity of 4 to 9. The vertical conductor is a solidified metal body filled in an area surrounded by the insulating material-filled layer.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: June 20, 2017
    Assignee: NAPRA CO., LTD.
    Inventors: Shigenobu Sekine, Yurina Sekine, Yoshiharu Kuwana
  • Patent number: 9666639
    Abstract: Spin Torque Transfer (STT) memory cell structures and methods are described herein. One or more STT memory cell structures comprise a STT stack including: a pinned ferromagnetic material in contact with an antiferromagnetic material; a tunneling barrier material positioned between a ferromagnetic storage material and the pinned ferromagnetic material; a multiferroic material in contact with the ferromagnetic storage material; and a first electrode and a second electrode, wherein the antiferromagnetic material, the pinned ferromagnetic material, and the ferromagnetic storage material are located between the first electrode and the second electrode. The STT memory cell structure can include a third electrode and a fourth electrode, wherein at least a first portion of the multiferroic material is located between the third and the fourth electrode.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: May 30, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Stephen J. Kramer, Gurtej S. Sandhu
  • Patent number: 9653593
    Abstract: The present disclosure provides a FinFET device and method of fabricating a FinFET device. The method includes providing a substrate, forming a fin structure on the substrate, forming a gate structure including a gate dielectric and gate electrode, the gate structure overlying a portion of the fin structure, forming a protection layer over another portion of the fin structure, and thereafter performing an implantation process to form source and drain regions.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: May 16, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Bartlomiej Jan Pawlak
  • Patent number: 9647138
    Abstract: A metal oxide semiconductor transistor includes a gate, a metal oxide active layer, a gate insulating layer, a source, and a drain. The metal oxide active layer has a first surface and a second surface, and the first surface faces to the gate. The gate insulating layer is disposed between the gate and the metal oxide active layer. The source and the drain are respectively connected to the metal oxide active layer. The second surface defines a mobility enhancing region between the source and the drain. An oxygen content of the metal oxide active layer in the mobility enhancing region is less than an oxygen content of the metal oxide active layer in the region outside the mobility enhancing region. The metal oxide semiconductor transistor has high carrier mobility.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: May 9, 2017
    Assignee: E INK HOLDINGS INC.
    Inventors: Chuang-Chuang Tsai, Hsiao-Wen Zan, Hsin-Fei Meng, Chun-Cheng Yeh
  • Patent number: 9537053
    Abstract: Provided is a high quality III nitride semiconductor device in which, not only X-shaped cracks extending from the vicinity of the corners of semiconductor structures to the center portion thereof, but also crack spots at the center portion can be prevented from being formed and can provide a method of efficiently manufacturing the III nitride semiconductor device. The III nitride semiconductor device of the present invention includes a support and two semiconductor structures having a nearly quadrangular transverse cross-sectional shape that are provided on the support. The two semiconductor structures are situated such that one side surface of one of the two semiconductor structures is placed to face one side surface of the other of them. The support covers the other three side surfaces and of the four sides of the semiconductor structures.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: January 3, 2017
    Assignees: BBSA LIMITED, DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Meoung Whan Cho, Seog Woo Lee, Ryuichi Toba, Yoshitaka Kadowaki
  • Patent number: 9443951
    Abstract: Fin-defining mask structures are formed over a semiconductor material layer having a first semiconductor material and a disposable gate structure is formed thereupon. A gate spacer is formed around the disposable gate structure and physically exposed portions of the fin-defining mask structures are subsequently removed. The semiconductor material layer is recessed employing the disposable gate structure and the gate spacer as an etch mask to form recessed semiconductor material portions. Embedded planar source/drain stressors are formed on the recessed semiconductor material portions by selective deposition of a second semiconductor material having a different lattice constant than the first semiconductor material. After formation of a planarization dielectric layer, the disposable gate structure is removed. A plurality of semiconductor fins are formed employing the fin-defining mask structures as an etch mask. A replacement gate structure is formed on the plurality of semiconductor fins.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: September 13, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Josephine B. Chang, Paul Chang, Michael A. Guillorn, Jeffrey W. Sleight
  • Patent number: 9412765
    Abstract: According to one embodiment, a thin film transistor includes: a substrate; a semiconductor layer; first and second insulating films; and gate, source and drain electrodes. The semiconductor layer is provided on the substrate. The semiconductor layer is made of an oxide having indium. The semiconductor layer has first and second regions and other region. The first insulating film covers a top face of the other region. The second insulating film covers at least a pair of side surfaces of the semiconductor layer. The second insulating film is formed under a condition different from that for the first insulating film. The gate electrode is provided on the first and second insulating films or below the semiconductor layer. The source and drain electrodes are provided on the first and second regions, respectively. The drain and source electrodes sandwich the pair of the side surfaces of the semiconductor layer.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: August 9, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomomasa Ueda, Shintaro Nakano, Nobuyoshi Saito, Kentaro Miura, Yujiro Hara, Hajime Yamaguchi
  • Patent number: 9385131
    Abstract: A conductive strap structure in lateral contact with a top semiconductor layer is formed on an inner electrode of a deep trench capacitor. A cavity overlying the conductive strap structure is filled a dielectric material to form a dielectric capacitor cap having a top surface that is coplanar with a topmost surface of an upper pad layer. A semiconductor mandrel in lateral contact with the dielectric capacitor cap is formed. The combination of the dielectric capacitor cap and the semiconductor mandrel is employed as a protruding structure around which a fin-defining spacer is formed. The semiconductor mandrel is removed, and the fin-defining spacer is employed as an etch mask in an etch process that etches a lower pad layer and the top semiconductor layer to form a semiconductor fin that laterally wraps around the conductive strap structure. An access finFET is formed employing two parallel portions of the semiconductor fin.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: July 5, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Felix Beaudoin, Stephen M. Lucarini, Xinhui Wang, Xinlin Wang
  • Patent number: 9312179
    Abstract: A method includes forming first and second fins of a finFET extending above a semiconductor substrate, with a shallow trench isolation (STI) region in between, and a distance between a top surface of the STI region and top surfaces of the first and second fins. First and second fin extensions are provided on top and side surfaces of the first and second fins above the top surface of the STI region. Material is removed from the STI region, to increase the distance between the top surface of the STI region and top surfaces of the first and second fins. A conformal stressor dielectric material is deposited over the fins and STI region. The conformal dielectric stressor material is reflowed, to flow into a space between the first and second fins above a top surface of the STI region, to apply stress to a channel of the finFET.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: April 12, 2016
    Assignee: Taiwan-Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Pin Lin, Chien-Tai Chan, Hsien-Chin Lin, Shyue-Shyh Lin