Patents Examined by Etsub D. Berhanu
  • Patent number: 10993632
    Abstract: An electronic device includes a wearing portion to be worn by a subject and a sensor unit that includes a sensor configured to detect a pulse wave of the subject. The sensor unit includes a displacement portion configured to contact a measured part of the subject and to be displaced in accordance with the pulse wave of the subject when the wearing portion is worn by the subject.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: May 4, 2021
    Assignee: KYOCERA Corporation
    Inventor: Hiromi Ajima
  • Patent number: 10987015
    Abstract: An electroencephalography (EEG) system includes a dry electrode design having a jagged, angular, comb, etc. shaped support housing. Each dry electrode housing includes multiple electrodes where each electrode has multiple contacts for scalp placement with minimal interference from hair. Signals from individual contacts may be disregarded and each housing may provide one or more aggregated signals for data analysis. Each electrode may be placed in close proximity with neighboring electrodes as no conductive gel is required and may be attached to the scalp using straps, elastic cap, spring-type materials, tape, etc. The dry electrode design effectively measures bio-signals including neurological activity.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: April 27, 2021
    Assignee: NIELSEN CONSUMER LLC
    Inventors: Anantha Pradeep, Robert T. Knight, Ramachandran Gurumoorthy
  • Patent number: 10987044
    Abstract: The present invention includes devices, systems and methods in the field of uroflowmetry, more specifically in the field of home uroflowmetry. In one aspect, the present invention discloses a core unit comprising an accelerometer; a urine detector; a weight sensor; a communication module; a microprocessor; and, an energy source. Further provided is a uroflowmetry device comprising said core unit.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: April 27, 2021
    Assignee: MINZE NV
    Inventors: Josef Sageder, Jiri Vermeulen
  • Patent number: 10959623
    Abstract: A blood pressure cuff (10), for determining the blood pressure in newborns, includes a chamber section (20) with an air chamber (22) and a handling section (30) for placing and fastening the chamber section (20) around an arm (100) of a newborn. The air chamber (22) has a chamber wall (24), which has, along a circumferential direction (U) of the air chamber (22), a longitudinal sealing seam (40). Two longitudinal edges (26a, 26b) of the chamber wall (24) are connected to one another overlappingly opposite each other in an airtight manner by the longitudinal sealing seam (40).
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: March 30, 2021
    Assignee: Drägerwerk AG & Co. KGaA
    Inventors: Thomas Graßl, Alexander Horn
  • Patent number: 10959639
    Abstract: An EEG monitoring apparatus (2) adapted to be carried continuously by a person being monitored comprises means adapted for measuring at least one EEG signal from the person carrying the apparatus and a signal processing means for analysing said at least one EEG signal and adapted to identify or predict predetermined biological incidents in said person based on said analysis. The EEG monitoring apparatus (2) further comprises a decision means adapted to decide when information is to be presented to said person and a message selection means for selecting a voice message providing said person with information, as well as an acoustic transducer adapted for presenting the selected voice message to the person. The invention also provides a method for presenting voice messages.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 30, 2021
    Assignee: T&W Engineering A/S
    Inventors: Preben Kidmose, Soren Erik Westermann
  • Patent number: 10952623
    Abstract: A wearable blood pressure measuring device includes a wristband, a valve plate, a gas-collecting seat, a gas transportation device, an elastic medium and a pressure sensor. The wristband has a mounting zone. The mounting zone has a first accommodation recess, a second accommodation recess, a gas-collecting hole and a pressure-releasing hole. The first accommodation recess and the second accommodation recess are in fluid communication with each other through the gas-collecting hole. When the gas transportation device is enabled to transport the gas to the elastic medium, the elastic medium is inflated with the gas and expanded to push the pressure sensor to be in close contact with a measurement part of a user's body, thereby measuring a blood pressure value of a target artery through a scanning operation.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: March 23, 2021
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Shih-Chang Chen, Jia-Yu Liao, Yung-Lung Han, Chi-Feng Huang, Wei-Ming Lee
  • Patent number: 10952680
    Abstract: A bioamplifier for analyzing electroencephalogram (EEG) signals is disclosed. The bioamplifier includes an input terminal for receiving an EEG signal from a plurality of sensors coupled to a user. The bioamplifier also includes an analogue-to-digital converter arranged to receive the EEG signal from the input terminal and convert the EEG signal to a digital EEG signal. A data processing apparatus within the bioamplifier is arranged to receive the digital EEG signal from the analogue-to-digital converter and programmed to process, in real time the digital EEG signal using a first machine learning model to generate a cleaned EEG signal having a higher signal-to-noise ratio than the digital EEG signal. The bioamplifier further includes a power source to provide electrical power to the analogue-to-digital converter and the data processing apparatus. The bioamplifier includes a housing that contains the analogue-to-digital converter, the data processing apparatus, the power source, and the sensor input.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: March 23, 2021
    Assignee: X Development LLC
    Inventors: Sarah Ann Laszlo, Brian John Adolf, Gabriella Levine, Joseph R. Owens, Patricia Prewitt, Philip Edwin Watson
  • Patent number: 10945617
    Abstract: Methods for heart rate measurement based on pulse oximetry are provided that can tolerate some degree of relative displacement of a photoplethysmograph (PPG) heart rate monitor device. In some methods, artifact compensation based on a reference signal is performed on the PPG signal data to remove artifacts in the signal that may be caused, for example, by changes in ambient light and/or motion of a person wearing the monitor device. The reference signal used for artifact compensation may be generated using an LED of a complementary wavelength to that of the LED used to generate the PPG signal, or by driving an LED at a lower current than the current applied to generate the PPG signal.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: March 16, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Vitali Loseu, Sourabh Ravindran
  • Patent number: 10945654
    Abstract: Methods, systems, and apparatus implementing a generalizable self-calibrating protocol coupled with machine learning algorithms in an exemplary setting of classifying perceptual states as corresponding to the experience of perceptually opposite mental states (including pain or no pain) are disclosed. An embodiment presented represents inexpensive, commercially available, wearable EEG sensors providing sufficient data fidelity to robustly differentiate the two perceptually opposite states. Low-computational overhead machine learning algorithms that can be run on a mobile platform can be used to find the most efficient feature handles to classify perceptual states as self-calibrated by the user. The invention is generalizable to states beyond just pain and pave the way towards creating EEG NFB applications targeting arbitrary, self-calibrated perceptual states in at-home and wearable settings.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: March 16, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Andreas Mershin, Thrasyvoulos Karydis
  • Patent number: 10939828
    Abstract: Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: March 9, 2021
    Assignee: HeartFlow, Inc.
    Inventors: Timothy A. Fonte, Charles A. Taylor, Hyun Jin Kim, Sophie Khem
  • Patent number: 10932716
    Abstract: Systems and methods are provided for quantitatively and objectively characterizing sleep architecture in normal individuals and persons with various health conditions. Embodiments of the invention facilitate characterizing temporal-pattern information of an individual's sleep, such as measured by electroencephalography (EEG), for identifying persons with abnormalities in the temporal-pattern information, sequences or durations of their stages of sleeping (“sleep architecture”), for facilitating selecting appropriate therapy or treatment, and for monitoring the effectiveness of such therapy or treatment. In one aspect, a set of time series are formed by electronically representing and storing information pertaining to brain activity, such as EEG hypnogram or sleep information, over a multi-night span.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: March 2, 2021
    Assignee: CERNER INNOVATION, INC.
    Inventors: Douglas S. McNair, Kanakasabha Kailasam, William Stadler
  • Patent number: 10932763
    Abstract: A tissue collecting tool includes: a main body that is long; an operation part arranged on a proximal end side of the main body; a bag part including a bottom portion and an opening portion and having a part of the opening portion fixed to the main body such that the opening portion is positioned on a further proximal end side than the bottom portion; and a linear member connected to the opening portion and the operation part and raising the opening portion by being moved in a longitudinal direction of the main body.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: March 2, 2021
    Assignee: OLYMPUS CORPORATION
    Inventor: Takayasu Mikkaichi
  • Patent number: 10918325
    Abstract: A brain wave measuring device includes a first brain wave measuring unit that contacts an ear of a user, a second brain wave measuring unit, joined to the first brain wave measuring unit, that contacts the ear, and a transmitter that transmits a brain wave measurement result obtained by the first brain wave measuring unit and the second brain wave measuring unit to a terminal device.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: February 16, 2021
    Assignee: FUJI XEROX CO., LTD.
    Inventors: Tomohito Takagi, Shinji Onishi, Kengo Tokuchi, Tsutomu Shiihara
  • Patent number: 10898137
    Abstract: An electroencephalogram (EEG) sensor is disclosed. The EEG sensor includes a housing defining a chamber capable of storing a gel, the housing includes a first and a second chamber wall, the walls each comprising a corresponding access port located on a common axis extending through the housing; an electrically-conductive probe with a probe tip extending at least partially through the chamber along the axis, at least a portion of the probe tip being exposed to the chamber; an electrical terminal located at an outer surface of the second chamber wall, the electrical terminal being in electrical communication with the probe tip through the access port at the second chamber wall; and a compliant member mechanically coupled to the access port at the first chamber wall capable of compressing, thereby providing a dispense pathway from the chamber through the access port at the first chamber wall.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: January 26, 2021
    Assignee: X Development LLC
    Inventors: Joseph Hollis Sargent, Philip Edwin Watson
  • Patent number: 10898082
    Abstract: Noninvasive methods and apparatus for detecting blood volume imbalances in a mammalian subject are disclosed. The method includes obtaining baseline measurements of at least three physiological parameters from a subject wherein the parameters are selected from the group consisting of heart rate, electrical body impedance, skin temperature, perfusion index, peripheral blood flow and skin humidity. Measurements of electrical body impedance, skin temperature, perfusion index, peripheral blood flow and skin humidity are taken at one or more extremities of the subject such as the calf, ankle, forearm, thigh, fingers and toes. The physiological parameters for which baseline measurements were obtained are then monitored to detect changes from the baseline measurements that indicate blood volume imbalances.
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: January 26, 2021
    Assignee: Zynex Monitoring Solutions Inc.
    Inventor: Thomas Sandgaard
  • Patent number: 10874308
    Abstract: An aspect of the disclosure pertains to a blood pressure measurement device and methods of obtaining pulse information from a blood pressure measurement. An inflatable bladder defines, at least in part, a pressurizable volume. The inflatable bladder may be inflated to pressurize a user's appendage and temporarily occlude blood flow in the user's appendage, where the inflatable bladder is inflated to a pressure greater than a maximum amplitude pressure from oscillometric data in a pressure profile. The inflatable bladder may be deflated and then re-inflated to a target pressure and held at the target pressure to generate pulse information, or the inflatable bladder may be deflated to the target pressure and held at the target pressure to generate the pulse information.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: December 29, 2020
    Assignee: Fitbit, Inc.
    Inventors: Xi Zhang, Keith Adam Wong, Andrew Larsen Axley, Dan Stefan Tudose, Conor Joseph Heneghan, Radu Dobroiu, Alexandru-Mihai Şolot
  • Patent number: 10869638
    Abstract: An acoustic device for spirometric measurement is provided. The acoustic device includes an inlet conduit configured to receive an airflow and a central cavity in communication with the inlet conduit. The central cavity includes a channel configured to guide at least a portion of the airflow into a vorticial flow about a central axis of the central cavity. The acoustic device further includes an outlet conduit configured to receive at least a portion of the vorticial flow and transduce at least a portion of kinetic energy of the vorticial flow into an acoustic emission. A frequency of the acoustic emission varies based on a rate of the airflow provided to the inlet conduit. In addition, the acoustic device includes a flow controller configured to modify at least a portion of the airflow provided to the inlet conduit.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: December 22, 2020
    Inventor: Krispin Johan Leydon
  • Patent number: 10863912
    Abstract: A system, a computer readable storage medium, and a method for analyzing electroencephalogram signals can include a plurality of sensors configured to contact a skull and capture the electroencephalogram signals, one or more computer memory units for storing computer instructions and data, and one or more processors configured to perform the operations of clustering the electroencephalogram signals using at least stored objective data and added subjective data including patient profile data to provide clustered data results and predicting one or more among a medical diagnosis, assessment, plan, necessary forms, or recommendations for follow up based on the clustered data results.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: December 15, 2020
    Assignee: MYNEURVA HOLDINGS, INC.
    Inventors: Frederick Scott Starr, Sean O'Connor
  • Patent number: 10863937
    Abstract: A method for calibration of a photoplethysmographic device including the steps of providing a fluid circuit (305) for blood or other liquid, a pump mechanism (310) to generate pulsatile flow of blood through the fluid circuit, a sample of excised tissue (315) in the fluid circuit through which the blood flows, and a photoplethysmographic device including an emitter and a photodetector (330) positioned on the tissue (335, 340) so that a portion of the light output by the emitter passes through the tissue and is incident on the photodetector. The method further includes the steps of energizing the pump mechanism (420) to move the blood through the tissue, energizing the emitter (425) to output light, collecting paired data from the photodetector and from one or more reference measurements (430), and processing the paired data to calibrate the photoplethysmographic device (435).
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: December 15, 2020
    Assignee: Kestrel Labs, Inc
    Inventor: Jonas Alexander Pologe
  • Patent number: 10856743
    Abstract: Vital sign sensor apparatuses which measures vital signs based on arterial pressure waveforms are described. In some embodiments, the apparatus includes an infrared sensor configured to capture at least a portion of an arterial pulse pressure waveform from a user. The apparatus further includes a processor configured to determine a maximum point for each of a plurality of peaks of the arterial pulse pressure waveform, and a corresponding first timestamp. The processor also determines one or more vital signs (e.g., a heart rate for a user, a heart rate variation of the user, a respiration rate of the user, and/or an arterial pulse pressure of the user) based at least in part on the plurality of maximum points and the plurality of corresponding timestamps. Related systems, methods, and articles of manufacture are also described.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: December 8, 2020
    Assignee: OslerMD, Inc.
    Inventors: Bahman Khatam, John Richard Gelm