Patents Examined by Fani Boosalis
  • Patent number: 10962660
    Abstract: An active matrix substrate includes a photoelectric conversion element in a pixel P defined by a gate line and a data line. The photoelectric conversion element is connected with a bias line, and the bias line is connected with a bias terminal that supplies a bias voltage to the bias line. The bias terminal is connected with a first protection circuit that is formed with a nonlinear element. The first protection circuit is connected in a reverse-biased state between a first line to which a predetermined voltage higher than the bias voltage is supplied, and the bias terminal.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: March 30, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Fumiki Nakano, Makoto Nakazawa, Hiroyuki Moriwaki, Rikiya Takita
  • Patent number: 10962656
    Abstract: A method for measuring and representing the level of local irradiation doses, in at least two dimensions, comprises: a step of positioning N probes Si sensitive to irradiating radiation, each corresponding to a local zone Zi according to a known topology; a step of acquiring, by each of the probes, the level of radiation ISi detected and periodically recording numerical values ISi(t); and a step of converting the numerical values ISi(t) into values DSi(t) corresponding to the radiation dose applied to each of the Z zones associated with a probe Si, according to a calibration table. The method further comprises, during the measurement sequence, steps of spatial interpolation calculation of at least one estimated irradiation level value ISiv(t) of at least one virtual zone Ziv that is not associated with a probe. A measurement device for implementing this method is also described.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: March 30, 2021
    Assignee: Fibermetrix
    Inventors: Mèlodie Munier, Fanny Carbillet, Ramiro Moreno
  • Patent number: 10954607
    Abstract: The luminance of a transmission mode X-ray scintillator diamond plate is dominated by induced defect centers having an excited state lifetime less than 10 msec, and in embodiments less than 1 msec, 100 usec, 10 used, 1 used, 100 nsec, or even 50 nsec, thereby providing enhanced X-ray luminance response and an X-ray flux dynamic range that is linear with X-ray flux on a log-log scale over at least three orders of magnitude. The diamond plate can be a single crystal having a dislocation density of less than 104 per square centimeter, and having surfaces that are ion milled instead of mechanically polished. The defect centers can be SiV centers induced by silicon doping during CVD diamond formation, and/or NV0 centers formed by nitrogen doping followed by applying electron beam irradiation of the diamond plate and annealing.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: March 23, 2021
    Assignees: Euclid Techlabs, LLC, Center for Technology Licensing (“CTL”) at Cornell University, Research Foundation of The City University of New York
    Inventors: Sergey Antipov, Stanislav Stoupin, Alexandre M. Zaitsev
  • Patent number: 10955350
    Abstract: A SiC wafer defect measuring method which includes a device management step of managing a defect measuring device by irradiating a reference sample made of a material having a light-emitting intensity that does not change with repeated irradiation by excitation light and which has a pattern made of recesses and/or protrusions in the surface, the irradiation by the excitation light being performed before measuring defects in a SiC wafer and under the same irradiation conditions as the measurement of the defects in the SiC wafer, and then measuring the S/N ratio of the pattern from a reflection image of the pattern.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: March 23, 2021
    Assignee: SHOWA DENKO K.K.
    Inventor: Koji Kamei
  • Patent number: 10948287
    Abstract: A wearable device for spacing awareness including a housing assembly and an electronics assembly is disclosed. The housing assembly includes a housing which includes a lens. The housing includes a securing clip at a rear side to easily attach the housing to a wearer. Within the housing is the electronics assembly. The electronics assembly includes sensors securing within the housing and behind the lens. The sensors being infrared sensors that detect when someone is too close to the wearer through heat detection. The lens help improve the function of the sensors. When the sensors detect a person is too close to the wear a laser beam is emitted. The laser beam indicates how far from the wearer other people must remain so that proper social distancing is achieved. With proper social distancing the likelihood of cross contamination from air borne diseases, bacteria and viruses is reduced.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: March 16, 2021
    Inventor: Peter Grant
  • Patent number: 10948624
    Abstract: A detector assembly disposed about a tubular for placement within a wellbore penetrating a subterranean formation and comprising: a gamma radiation detector disposed within a pressure housing, wherein the detector extends an axial length in a direction parallel to a central axis of the tubular; and a neutron shield disposed about a circumference of the tubular along at least the axial length of the detector, wherein the neutron shield reduces an amount of neutrons that pass from the wellbore and/or the formation through the tubular during operation of the detector assembly, while allowing transmission of gamma rays therethrough to the detector.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: March 16, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Jeffrey Clayton Neely
  • Patent number: 10942290
    Abstract: The present application discloses an X-ray detection system and method. The detection system includes: a beam source generator, first detectors, a second detector, a collimating device and a processor. The first detectors and the second detector are alternately arranged in a transmission direction of an object to be detected. The beam source generator emits a plurality of columns of beam signals, wherein each column of beam signals comprises a plurality of beam signals; the first detectors receive a plurality of columns of transmitted beam signals passing through the object; the collimating device performs a specificity selection from a plurality of columns of scattered beam signals passing through the object; the second detector receives scattered beam signals selected by the collimating device; and the processor determines a detection result of the object according to the plurality of columns of transmitted beam signals and the selected scattered beam signals.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: March 9, 2021
    Assignee: Nuctech Company limited
    Inventors: Li Zhang, Zhiqiang Chen, Yunda Sun, Xin Jin, Ming Chang, Xiaofei Xu
  • Patent number: 10942061
    Abstract: A photoionization detector (100) comprises an ultraviolet radiation source (130); one or more detector electrodes (204 and 205); and a shielding material (206) located between the ultraviolet radiation source (130) and the one or more detector electrodes (204 and 205), wherein the ultraviolet radiation (240) does not directly impinge on any part of the one or more detector electrodes (204 and 205). A method for gas detection comprises exposing a photoionization detector (100) to an environment containing a target gas; and shielding the one or more detector electrodes (204 and 205) from direct impingement from the ultraviolet radiation (240) via the shielding material (206).
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: March 9, 2021
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Bo Chen, Yuzhong June Wang, Qidao Lin, Guangli Xie, Zhanghua Wu
  • Patent number: 10935502
    Abstract: A method for detecting inconsistencies in an assembly using an energy source and an imaging device is disclosed. An energy source directs energy through first scanning mirrors toward a surface of the laminated composite assembly raising an energy level of an inspection area. An imaging device directs a view through second scanning mirrors toward the inspection area and the imaging device detects a rate of change in energy at the surface of the laminated composite. Movement of the first scanning mirrors is synchronized with movement of the second scanning mirrors for directing a view of the imaging device to the inspection area after the energy level of the area of the surface has been raised. The imaging device detects dissipation of energy at the area of the surface being inspected and identifies inconsistencies associated defects in the assembly.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: March 2, 2021
    Assignee: VIRTEK VISION INTERNATIONAL, ULC
    Inventor: Kurt D. Rueb
  • Patent number: 10935674
    Abstract: A neutrino detector device (100) for detecting neutrinos comprises at least one target detector (10) including a target crystal (11) for creating phonons in response to an interaction of neutrinos to be detected with the target crystal (11) and a target temperature sensor (12) for sensing a temperature change in response to an absorption of phonons created in the target crystal (11), an inner veto detector (20) comprising at least one inner veto component (21) with an inner veto temperature sensor (23), wherein the at least one inner veto component (21) is adapted for supporting the at least one target detector (10) and for an anticoincidence based discrimination of alpha and beta background interaction events by creating phonons in response to the background interaction events and sensing a temperature change in response to an absorption of the phonons with the inner veto temperature sensor (23), and an outer veto detector (30) for accommodating the inner veto detector (20), wherein the outer veto detector (
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: March 2, 2021
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Raimund Strauss, Johannes Rothe, Dieter Hauff
  • Patent number: 10928252
    Abstract: A detector includes a sensor configured to sense a moving object in at least one of the electromagnetic spectrum and the acoustic spectrum. A fixed coded aperture of the detector is disposed between a moving object and the sensor.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: February 23, 2021
    Assignee: CARRIER CORPORATION
    Inventors: Alan Matthew Finn, Joseph V. Mantese, Nicholas Charles Soldner, Vijaya Ramaraju Lakamraju, Sameh Dardona, Ziyou Xiong
  • Patent number: 10914658
    Abstract: The present disclosure is directed to an improved method for distinguishing tissue from an embedding medium, such as paraffin in a formalin-fixed paraffin-embedded sample. The method involves the use of fluorescence of naturally-occurring species in tissue to determine the location of the tissue in the embedded sample. An embedded sample is generally excited by light of a selected wavelength, and the fluorescence emission at an emitted wavelength is used to locate the boundary or location of the tissue in the embedded sample.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: February 9, 2021
    Assignee: Agilent Technologies, Inc.
    Inventors: Kyle Schleifer, Kristin Briana Bernick, Adrienne Mccampbell, Nicholas M. Sampas, Victor Lim
  • Patent number: 10914678
    Abstract: A method for quantitative detection of blood lipid in blood based on terahertz spectroscopy, including: matching the terahertz spectral absorption coefficient curves of blood samples obtained in step 3 with parameters of component concentration and component type of the blood lipid detected by hospital instruments, and establishing a terahertz blood lipid parameter database by combining the time-domain signal data of samples of the triglyceride and cholesterol; determining parameters of a support vector regression (SVR) model; performing a training with the training set as input to the SVR model to obtain a support vector and a corresponding weight; and testing the test set of an unknown blood sample using the trained support vector and the corresponding weight.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: February 9, 2021
    Assignee: University of Shanghai for Science and Technology
    Inventors: Yan Peng, Yiming Zhu, Liping Wang, Qingrou Yang, Jiayu Zhao, Zhijia Liu, Yang Liu, Xinyu Tang, Keying Liu, Lin Guo, Songlin Zhuang
  • Patent number: 10914632
    Abstract: Various embodiments disclosed herein describe a divided-aperture infrared spectral imaging (DAISI) system that is adapted to acquire multiple IR images of a scene with a single-shot (also referred to as a snapshot). The plurality of acquired images having different wavelength compositions that are obtained generally simultaneously. The system includes at least two optical channels that are spatially and spectrally different from one another. Each of the at least two optical channels are configured to transfer IR radiation incident on the optical system towards an optical FPA unit comprising at least two detector arrays disposed in the focal plane of two corresponding focusing lenses. The system further comprises at least one temperature reference source or surface that is used to dynamically calibrate the two detector arrays and compensate for a temperature difference between the two detector arrays.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: February 9, 2021
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen
  • Patent number: 10910414
    Abstract: An integrated ultraviolet (UV) detector includes a silicon carbide (SiC) substrate, supporting metal oxide field effect transistors (MOSFETs), and PN Junction photodiodes. The MOSFET includes a first drain/source implant in the SiC substrate and a second drain/source implant in the SiC substrate. The P-N junction photodiodes include a blanket oxide over the silicon carbide substrate and the gate, an implant extending into the silicon carbide substrate, and an opening extending through the blanket oxide layer down to the silicon carbide substrate on one side of the gate of the P-N junction photodiode.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: February 2, 2021
    Assignee: CoolCAD Electronics, LLC
    Inventors: Neil Goldsman, Akin Akturk, Zeynep Dilli, Brendan Michael Cusack, Mitchell Adrian Gross
  • Patent number: 10898157
    Abstract: A lung motion phantom device and method of operation. The device has a body having an outer shell and a lung insert, a first actuator connected to a first drive linkage for driving a first displacement of an internal volume of the lung insert and an outer surface of the outer shell in a first direction, a second actuator connected to a second drive linkage for driving a second displacement of the internal volume of the lung insert and the outer surface of the outer shell in a second direction different than the first direction, and a controller programmed to control the first and second actuators such that the first and second displacements simulate movement of an external surface and an interior of a thoracic region of a patient.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: January 26, 2021
    Assignee: University of Maryland, Baltimore
    Inventors: Amit Sawant, Maida Ranjbar, Pouya Sabouri, Carlo Repetto
  • Patent number: 10895533
    Abstract: Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter “badges” to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: January 19, 2021
    Assignee: Photon Systems, Inc.
    Inventors: William F. Hug, Röhit Bhartia, Ray D. Reid, Arthur L. Lane
  • Patent number: 10890533
    Abstract: Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: January 12, 2021
    Assignee: Photon Systems, Inc.
    Inventors: William F. Hug, Ray D. Reid, Rohit Bhartia, Arthur L. Lane
  • Patent number: 10890525
    Abstract: An infrared (IR) sensor and a method of detecting molecular species in a liquid. In one embodiment, the IR sensor includes: (1) an IR light source configured to emit IR light, (2) a sensing element configured to receive the IR light, the IR light generating an evanescent field about the sensing element as the IR light propagates therethrough, molecules in a subject liquid interacting with the evanescent field and affecting a characteristic of the IR light and (3) an IR light detector configured to receive the IR light from the sensing element and detect the characteristic.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: January 12, 2021
    Assignee: Max-IR Labs, LLC
    Inventor: Ecatherina Roodenko
  • Patent number: 10888294
    Abstract: A method and system is disclosed for acquiring image data of a subject. The image data can be collected with an imaging system in a selected manner and/or motion. More than one projection may be combined to generate and create a selected view of the subject.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: January 12, 2021
    Assignee: Medtronic Navigation, Inc.
    Inventors: Patrick A. Helm, Rasika A. Parkar, Robert J. Reddy, Kyo C. Jin, Seunghoon Nam, Andre Souza, Xiaodong Tao, David A. Garlow, John R. Martin