Patents Examined by Feba Pothen
  • Patent number: 11867773
    Abstract: A dual integrator system comprises two integrators, an output stage, and a switching network. The first and second integrators receive a differential Hall sensor signal and a reference voltage. The first integrator outputs a first integrator signal based on the differential Hall sensor and the reference voltage. The second integrator outputs a second integrator signal based on the differential Hall sensor signal and the reference voltage. The first integrator comprises a first offset cancellation feedback loop, and the second integrator comprises a second offset cancellation feedback loop. The switching network is coupled to the first and second integrators and to the output stage, and alternates which of the first and second integrators is coupled to the output stage. In some embodiments, the first and second integrators each perform a reset operation, a sampling operation, an integration operation, a differential to single-ended conversion operation, and a holding operation.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: January 9, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Partha Sarathi Basu, Dimitar Trifonov Trifonov, Tony Ray Larson, Chao-Hsiuan Tsay
  • Patent number: 11867732
    Abstract: An output voltage protection controller includes a comparator circuit and a voltage adjustment circuit. The comparator circuit compares a first voltage signal with a second voltage signal to generate a control signal that controls output voltage protection of a voltage regulator, wherein one of the first voltage signal and the second voltage signal is a feedback voltage derived from an output voltage of the voltage regulator, and another of the first voltage signal and the second voltage signal is a voltage detection threshold. The voltage adjustment circuit injects an offset voltage to the second voltage signal for dynamically adjusting the second voltage signal during a period in which a target regulated voltage level of the output voltage is a constant.
    Type: Grant
    Filed: February 13, 2022
    Date of Patent: January 9, 2024
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventors: Nien-Hui Kung, Chia-Hua Chou
  • Patent number: 11860214
    Abstract: A system for monitoring the state of a cable, includes a plurality of reflectometry devices able to inject a test signal at a point of injection into the cable and to measure a signal having propagated back through the cable to the point of injection into the cable, the reflectometry devices being intended to be positioned along the cable so as to divide the cable into successive segments, the system comprising a control unit that is able to communicate with the reflectometry devices and that is configured so as to carry out at least one reflectometry test consisting in injecting a test signal into the cable by means of a first reflectometry device and measuring the test signal, by means of the first reflectometry device, after it has propagated through the cable and been reflected from an impedance discontinuity, the system further comprising a post-processing unit able to communicate with the reflectometry devices and configured to analyze the measurement of the test signal with a view to detecting an ampli
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: January 2, 2024
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Marie-Bénédicte Jacques, Wafa Ben Hassen, Cyril Chastang
  • Patent number: 11859491
    Abstract: A system for determining a water cut of a water/oil emulsion includes a water cut sensor with a magnetoelastic ribbon, an inductive coil arranged proximate to the magnetoelastic ribbon so that an electromagnetic field produced by the inductive coil electromagnetically excites the magnetoelastic ribbon, and an alternating current source. A processor is configured to determine the water cut of the water/oil emulsion based on a resonant frequency of the magnetoelastic ribbon while the magnetoelastic ribbon is excited by the inductive coil. A feed line is coupled to the water cut sensor. The feed line includes an electrical coupling between the alternating current source and the inductive coil of the water cut sensor. The feedline includes an electrical coupling between the processor and the inductive coil of the water cut sensor or the processor is coupled to an acoustic sensor.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: January 2, 2024
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Jürgen Kosel, Altynay Kaidarova, Abdullah Saud Almansouri, Mohammed Asadullah Khan, Liam Swanepoel
  • Patent number: 11852662
    Abstract: Provided are embodiments for circuit for detecting an open-wire condition for a differential input. Embodiments include a sensor, and a line replaceable unit (LRU) coupled to the sensor, wherein the LRU comprises a differential amplifier to provide a sensor output. Embodiments can also include a synchronous demodulator coupled to an output of the differential amplifier through an alternating current (AC) coupling network, wherein the synchronous demodulator is configured to receive the differential amplifier output and a reference signal at the synchronous demodulator signal input and reference input, and provide a synchronous demodulator output voltage to indicate an open-wire condition. Also provided are embodiments of a method for detecting an open-wire condition for a differential input.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: December 26, 2023
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventor: Gordon Elliott Winer
  • Patent number: 11852678
    Abstract: Placing a first side of an active thermal interposer device of a thermal management head against a device under test (DUT). Disposing a cold plate against a second side of the active thermal interposer. The DUT includes a plurality of modules and the active thermal interposer device includes a plurality of zones, each zone of the plurality of zones corresponding to a respective module of the plurality of modules and operable to be selectively heated. Receiving a respective set of inputs corresponding to each zone of the plurality of zones. Performing thermal management of the plurality of modules of the DUT by separately controlling temperature of each zone of the plurality of zones by controlling a supply of coolant to the cold plate, and individually controlling heating of each zone of the plurality of zones.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: December 26, 2023
    Assignee: Advantest Test Solutions, Inc.
    Inventors: Karthik Ranganathan, Gregory Cruzan, Paul Ferrari, Samer Kabbani, Martin Fischer
  • Patent number: 11852672
    Abstract: A method that is disclosed that includes the operations outlined below. Dies are arranged on a test fixture, and each of the dies includes first antennas and at least one via array, wherein the at least one via array is formed between at least two of the first antennas to separate the first antennas. By the first antennas of the dies, test processes are sequentially performed on an under-test device including second antennas that positionally correspond to the first antennas, according to signal transmissions between the first antennas and the second antennas.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTORMANUFACTURING COMPANY LIMITED
    Inventors: Mill-Jer Wang, Ching-Nen Peng, Hung-Chih Lin, Sen-Kuei Hsu, Chuan-Ching Wang, Hao Chen
  • Patent number: 11821926
    Abstract: The present disclosure provides a voltage fluctuation detection circuit, which includes a voltage adjustment circuit and a comparator. The voltage adjustment circuit includes an adjustment circuit input terminal to receive the operating voltage, a first adjustment circuit output terminal to output a first voltage, and a second adjustment circuit output terminal to output a second voltage that is step-shaped, the second voltage differs from the first voltage by a bias voltage at the beginning of a preset clock period and falls within a first amplitude within the preset clock period, the magnitude of the bias voltage is related to the first voltage. The comparator includes: a first comparator input terminal to receive the first voltage, a second comparator input terminal to receive the second voltage, and a comparator output terminal to output a comparison result of the first voltage and the second voltage.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: November 21, 2023
    Assignee: Hypower Microelectronics (Wuxi) Co., Ltd.
    Inventor: Ning Zhu
  • Patent number: 11821761
    Abstract: A system may include a resistive-inductive-capacitive sensor configured to sense a physical quantity, and a measurement circuit communicatively coupled to the resistive-inductive-capacitive sensor and configured to measure one or more resonance parameters associated with the resistive-inductive-capacitive sensor and indicative of the physical quantity and, in order to maximize dynamic range in determining the physical quantity from the one or more resonance parameters, dynamically modify, across the dynamic range, either of reliance on the one or more resonance parameters in determining the physical quantity or one or more resonance properties of the resistive-inductive-capacitive sensor.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: November 21, 2023
    Assignee: Cirrus Logic Inc.
    Inventors: Tejasvi Das, Siddharth Maru, John L. Melanson
  • Patent number: 11815568
    Abstract: An electronic device includes a magnetometer that outputs magnetometer sensor signals and a gyroscope that outputs gyroscope sensor signals. The electronic device includes a magnetometer calibration module that calibrates the magnetometer utilizing the gyroscope sensor signals. The electronic device generates a first magnetometer calibration parameter based on a Kalman filter process. The electronic device generates a second magnetometer calibration parameter based on a least squares estimation process.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: November 14, 2023
    Assignee: STMicroelectronics, Inc.
    Inventors: Mahaveer Jain, Mahesh Chowdhary
  • Patent number: 11815484
    Abstract: A device for measuring the complex dielectric permittivity of a material under test (MUT) includes an electromagnetic wave generating/receiving unit, a transmission line, a self-referencing waveguide section and a sensing waveguide section. The electromagnetic wave generating/receiving unit is configured to generate an electromagnetic wave signal. The transmission line has a first characteristic impedance and transmits the electromagnetic wave signal. The self-referencing waveguide section has a second characteristic impedance, and includes a front end and a back end, wherein a first reflection signal is sent from the front end. The sensing waveguide section is connected to the back end, and configured to cooperate with the back end to send out remaining subsequent reflection signals, wherein the electromagnetic wave generating/receiving unit receives the first reflection signal and the remaining subsequent reflection signals to measure the complex dielectric permittivity of the MUT.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: November 14, 2023
    Assignee: NATIONAL YANG MING CHIAO TUNG UNIVERSITY
    Inventors: Chih-Ping Lin, Yin Jeh Ngui
  • Patent number: 11808791
    Abstract: A current sensor arrangement includes a first conductor configured to conduct a first portion of a primary current in a current flow direction; a second conductor configured to conduct a second portion of the primary current in the current flow direction; and a magnetic sensor. The first and second conductor are coupled in parallel. The first current produces a first magnetic field as it flows through the first conductor and the second current produces a second magnetic field as it flows through the second conductor. The first conductor and the second conductor are separated from each other in a first direction that is orthogonal to the current flow direction, thereby defining a gap. The magnetic sensor is arranged in the gap such that the first conductor is arranged over a first portion of the magnetic sensor and the second conductor is arranged under a second portion of the magnetic sensor.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: November 7, 2023
    Assignee: Infineon Technologies AG
    Inventors: Guenter Schwarzberger, Sebastian Maerz, Wolfgang Raberg
  • Patent number: 11802885
    Abstract: A sensor processing system includes a plurality of reduction circuits. The plurality of reduction circuits correspond to a plurality of sensors on a one-to-one basis. Each of the plurality of reduction circuits is electrically connected to an output terminal of a corresponding one of the plurality of sensors to reduce a low-frequency component of a sensor output of the corresponding one of the plurality of sensors.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: October 31, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Kouhei Yamada
  • Patent number: 11796437
    Abstract: Methods and systems are provided to detect a density and/or a concentration of a brine solution or any other solution flowing in a conduit. A diverted portion of the brine solution may be received from the conduit at a vertical pipe. The vertical pipe has a top and a bottom, where the diverted portion of the brine solution is received at the bottom of the vertical pipe and the top of the vertical pipe is at atmospheric pressure. A pressure sensor may detect a pressure of the brine solution in the vertical pipe. A processor may determine the density and/or the concentration of the brine solution based on the detected pressure of the brine solution and a property of a reference solution.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: October 24, 2023
    Assignee: BRINE MASTERS, LLC
    Inventors: Clay Hildreth, Christopher Robert Thomas
  • Patent number: 11796567
    Abstract: A method for electrically contacting components in a semiconductor wafer includes providing a flexible board comprising a first main surface on which a plurality of conductor tracks are arranged, positioning the board with respect to a semiconductor wafer such that the first main surface of the board faces the semiconductor wafer, the board is bent and pressed onto the semiconductor wafer in such a way that contact elements of a plurality of components arranged in a row in the semiconductor wafer come into contact with the conductor tracks, and electrical signals are applied to the components through the conductor tracks.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: October 24, 2023
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Michael Bergler, Roland Zeisel
  • Patent number: 11796586
    Abstract: A power cable includes a cable core, a jacket and an outermost semiconductor layer. The cable core includes at least one conductor, an insulating system thereof, and at least one metallic screen. The jacket surrounds the cable core and includes an inner jacket layer and an outer jacket layer. The outermost semiconducting layer surrounds the outer jacket layer in direct contact thereto. The power cable further includes a test semiconducting layer radially external to the inner jacket layer, radially internal to the outer jacket layer, and directly contacting them. A power cable system, and a jacket integrity testing method for a power cable, are also provided.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: October 24, 2023
    Assignee: Prysmian S.p.A
    Inventor: Jos Van Rossum
  • Patent number: 11789058
    Abstract: [Problem] The object of the present invention is to provide a static electricity distribution-visualizing material, a static electricity-visualizing film, a static electricity distribution-visualizing device, and a static electricity distribution-visualizing method, which can visualize a charged state to be seen with naked eyes so as to intuitively understand a static electricity distribution. [Solution] A static electricity distribution-visualizing material is manufactured so as to contain at least one of a fluorescent substance, a luminescent substance, an electroluminescent substance, a fractoluminescent substance, a photochromic substance, an afterglow substance, a photostimulated luminescent substance and a mechanoluminescent substance.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: October 17, 2023
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Nao Terasaki, Kazuya Kikunaga
  • Patent number: 11789059
    Abstract: Examples of fault location in a power transmission line connecting a first and a second terminal is described. In an example, arrival times of a first peak, a second peak, and a third peak of a travelling wave detected from measurements carried out at the first and second terminals is detected. A rise time associated with the first peak of the travelling wave is calculated. One of a first half and a second half of the power transmission line is identified, as having a fault, based on a comparison of the rise time. One of a first segment, a second segment, a third segment, and a fourth segment of the power transmission line is identified as having the fault. Length of the power transmission line is estimated. The fault location is estimated based on identification of one of the first, second, third, and fourth segments as having the fault.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: October 17, 2023
    Assignee: HITACHI ENERGY SWITZERLAND AG
    Inventors: Od Naidu, Preetham Venkat Yalla, Neethu George
  • Patent number: 11789048
    Abstract: An embodiment circuit comprises high-side and low-side switches arranged between supply and reference nodes, and having an intermediate node. A switching control signal is applied with opposite polarities to the high-side and low-side switches. An inductive load is coupled between the intermediate node and one of the supply and reference nodes. Current sensing circuitry is configured to sample a first value of the load current flowing in one of the high-side and low-side switches before a commutation of the switching control signal, sample a second value of the load current flowing in the other of the high-side and low-side switches after the commutation of the switching control signal, sample a third value of the load current flowing in the other of the high-side and low-side switches after the second sampling, and generate a failure signal as a function of the first, second and third sampled values of the load current.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: October 17, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventors: Vanni Poletto, Nicola Errico, Paolo Vilmercati, Marco Cignoli, Vincenzo Salvatore Genna, Diego Alagna
  • Patent number: 11774520
    Abstract: Ferrimagnetic oscillator magnetometers do not use lasers to stimulate fluorescence emission from defect centers in solid-state hosts (e.g., nitrogen vacancies in diamonds). Instead, in a ferrimagnetic oscillator magnetometer, the applied magnetic field shifts the resonance of entangled electronic spins in a ferrimagnetic crystal. These spins are entangled and can have an ensemble resonance linewidth of approximately 370 kHz to 10 MHz. The resonance shift produces microwave sidebands with amplitudes proportional to the magnetic field strength at frequencies proportional to the magnetic field oscillation frequency. These sidebands can be coherently averaged, digitized, and coherently processed, yielding magnetic field measurements with sensitivities possibly approaching the spin projection limit of 1 attotesla/?{square root over (Hz)}. The encoding of magnetic signals in frequency rather than amplitude relaxes or removes otherwise stringent requires on the digitizer.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: October 3, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: John F. Barry, Reed Anderson Irion, Jessica Kedziora, Matthew Steinecker, Daniel K. Freeman, Danielle A. Braje