Patents Examined by Felisa C. Hiteshew
  • Patent number: 7553373
    Abstract: A method of producing a silicon carbide single crystal, having: fixing a seed crystal, including setting a seed crystal on a seed crystal fixing part with interposition of an adhesive; applying a uniform pressure on the entire surface of the seed crystal by contacting a flexible bag which is inflatable and deflatable to the seed crystal by charging a gas into the to flexible bag; hardening the adhesive; and sublimating a silicon carbide powder obtained by calcinating a mixture containing at least a silicon source and a resol xylene resin, having a nitrogen content of 100 mass ppm or less and having a content of each impurity elements of 0.1 mass ppm or less, and re-crystallizing for growing a silicon carbide single crystal.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: June 30, 2009
    Assignee: Bridgestone Corporation
    Inventors: Masashi Otsuki, Takayuki Maruyama, Shigeki Endo, Daisuke Kondo, Takuya Monbara
  • Patent number: 7547359
    Abstract: An aerosol of a powder composed of helium carrier gas and particles of a hexagonal aluminum nitride is charged through a transfer pipe 3 into a film deposition chamber 4 whose interior is depressurized by gas evacuation using a vacuum pump 5 to maintain a degree of vacuum of 200-8000 Pa during supply of the carrier gas and the aerosol is blown from a nozzle 6 provided on the end of the transfer pipe 3 inside the film deposition chamber 4 to impinge on a substrate fastened to a substrate holder 7 to make the impact force of the particles at collision with the substrate 4 GPa or greater, thereby transforming the crystal structure of the aluminum nitride from hexagonal to cubic to deposit cubic aluminum nitride on the substrate.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: June 16, 2009
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Atsushi Iwata, Jun Akedo
  • Patent number: 7547360
    Abstract: In a method of SiC single crystal growth, a SiC single crystal seed and polycrystalline SiC source material are provided in spaced relation inside of a graphite growth crucible along with at least one compound capable of forming SiO gas in the growth crucible. The growth crucible is heated whereupon the gaseous SiO forms and reacts with carbon in the growth crucible thereby avoiding the introduction of carbon into the SiC single crystal before and during the growth thereof and the SiC source material vaporizes and is transported via a temperature gradient in the growth crucible to the seed crystal where it precipitates and forms a SiC single crystal.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: June 16, 2009
    Assignee: II-VI Incorporated
    Inventors: Avinash K. Gupta, Edward Semenas, Ilya Zwieback
  • Patent number: 7545847
    Abstract: A frequency synthesizer applied to a frequency hopping system includes a voltage controlled oscillator (VCO), a phase lock loop (PLL) system, a second frequency divider, a first SSB mixer, a second SSB mixer, and a multiplexer. The VCO generates an oscillating frequency. The PLL system includes a first frequency divider and divides the oscillating frequency by 10 to generate a first dividing signal. The second frequency divider divides the oscillating frequency by 2 to generate a second dividing signal and further divides the second dividing signal by 2 to generate a third dividing signal. The first SSB mixer mixes frequencies of the second and third dividing signals to generate a first mixing signal. The second SSB mixer mixes frequencies of the first mixing signal and the first dividing signal to generate a second mixing signal. The Multiplexer determines to output the first mixing signal or the second mixing signal.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: June 9, 2009
    Assignee: Alcor Micro, Corp.
    Inventors: Chi-Tung Chang, Chih-Hao Lai, Chieh-Tsao Hwang
  • Patent number: 7540919
    Abstract: A process for making silicon ingots using a multi-part, reusable, graphite crucible of at least two mold pieces configured for assembly into an open top mold having an interior surface functional as a mold cavity for receiving molten silicon; removing or reducing a prior applied release coating from the interior surface until a uniformly smooth finish is achieved; coating the interior surface with a first layer of release coating comprising silicon nitride; coating the interior surface with a second layer of release coat comprising silica suspended in water; coating the interior surface with a third layer of release coat comprising silicon nitride; curing the release coat on said crucible; casting a silicon ingot in the crucible; and then repeating the prior steps multiple times.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: June 2, 2009
    Assignee: GT Solar Incorporated
    Inventors: Santhana Raghavan Parthasarathy, Yuepeng Wan, Carl Chartier, Jonathan A Talbott, Kedar P Gupta
  • Patent number: 7537658
    Abstract: An oxide film 13 on the surface of the substrate 11 and an inner wall oxide film 112 in a COP 111 exposed to the surface of the substrate 11 are removed by cleaning the surface of the substrate 11 with a hydrofluoric acid solution. The substrate 11 is then cleaned with ozone water, thereby forming an oxide film 13 on the surface of the substrate 11. Thereafter the substrate 11 is subjected to a heat treatment for removing the oxide film 13 on the surface of the substrate 11. Consequently, the COP 111 on the surface of the substrate 11 is planarized to be eliminated from the substrate surface. Thereafter an epitaxial layer 12 is formed on the surface of the substrate 11.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: May 26, 2009
    Assignee: Sumco Techxiv Corporation
    Inventors: Yuichi Nasu, Kazuhiro Narahara
  • Patent number: 7534296
    Abstract: An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: May 19, 2009
    Assignee: Board of Trustees of Michigan State University
    Inventors: Greg Swain, Anne Fischer, Jason Bennett, Michael Lowe
  • Patent number: 7524371
    Abstract: A method for controlling the temperature gradient on the side surface of a silicon single crystal, the height of a solid-liquid interface, and the oxygen concentration in the longitudinal direction of the silicon single crystal is provided in order to manufacture a defect-free silicon single crystal whose oxygen concentration is controlled to a predetermined value rapidly and stably. By disposing a cylindrical cooler around the silicon single crystal, and adjusting the pulling speed of the silicon single crystal, the rotation speed of a crucible that stores molten silicon and the rotation speed of the silicon single crystal, and the output ratio of a multi-heater separated into at least two in the longitudinal direction of the silicon single crystal disposed around the crucible, the temperature gradient on the side surface, the height of the solid-liquid interface, and the oxygen concentration in the longitudinal direction of the silicon single crystal are controlled.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: April 28, 2009
    Assignee: Sumco Techxiv Corporation
    Inventors: Takashi Yokoyama, Toshiaka Saishoji, Toshirou Kotooka, Kazuyoshi Sakatani
  • Patent number: 7524376
    Abstract: A crystal growth setup within a physical vapor transport growth furnace system for producing AlN monocrystal boules at high temperatures includes a crucible effective to contain an AlN source material and a growing AlN crystal boule. This crucible has a thin wall thickness in at least that portion housing the growing AlN crystal boule. Other components include a susceptor, in case of an inductive heating, or a heater, in case of a resistive heating, a thermal insulation enclosing the susceptor or heater effective to provide a thermal gradient inside the crucible in the range of 5-100° C./cm and a furnace chamber capable of being operated from a vacuum (<0.1 torr) to a gas pressure of at least 4000 torr through filling or flowing a nitrogen gas or a mixture of nitrogen gas and argon gas. The high temperatures contribute to a high boule growth rate and the thin wall thickness contributes to reduced imparted stress during boule removal.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: April 28, 2009
    Assignee: Fairfield Crystal Technology, LLC
    Inventor: Shaoping Wang
  • Patent number: 7520932
    Abstract: A method of analyzing carbon concentration in crystalline silicon includes providing a section from a zoned and annealed silicon core. The zoned and annealed core is extracted from a polycrystalline silicon composition and has a columnar shape. The zoned and annealed core includes a single crystalline silicon region and a freeze-out melt region. The freeze-out melt region is disposed adjacent to the single crystalline silicon region, and the regions are spaced along a length of the columnar shape. Specifically, the section is provided from the freeze-out melt region, with the entire freeze-out melt region in the section. A carbon concentration of the section is determined. By providing the section from the freeze-out melt region, as opposed to the polycrystalline silicon composition, determination of carbon concentration in the crystalline silicon is enabled with a sensitivity at less than or equal to 10 parts per billion atomic.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: April 21, 2009
    Assignee: Dow Corning Corporation
    Inventor: Doug Kreszowski
  • Patent number: 7517406
    Abstract: Proposed is a technique of producing a magnetic garnet material of which the light absorption characteristics worsen little even though it is produced through LPE. The crucible for LPE is formed of a material containing Au. The amount of Au to be taken in single crystal formed in an Au crucible is smaller than that of Pt to be taken therein formed in a Pt crucible. As compared with Pt, the influence of Au on magnetic garnet film that increases the insertion loss in the film is small.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: April 14, 2009
    Assignee: TDK Corporation
    Inventors: Atsushi Ohido, Tamotsu Sugawara, Kazuhito Yamasawa, Shinichiro Kakei, Kazuya Shimakawa, Katsunori Hosoya
  • Patent number: 7510690
    Abstract: A crystallization system is provided comprising a trial generation station configured to generate crystallization trials in trial zones of a crystallization plate; an imaging station configured to take images of crystallization trials in the crystallization plate; a transport mechanism configured to transport the crystallization plate to the imaging station after generation of the crystallization trials; and a controller including logic for causing the trial generation station to generate the crystallization trials in the crystallization plate, logic for causing the transport mechanism to transport the crystallization plate to the imaging station and logic for causing the imaging station to take images of the crystallization trials.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: March 31, 2009
    Assignee: Takeda San Diego, Inc.
    Inventors: Laurent Martin, John W. Palan
  • Patent number: 7497906
    Abstract: A seed crystal fixing apparatus for fixing the seed crystal on the seed crystal setting part of a reaction vessel with interposition of the adhesive, has a chamber configured to place the seed crystal setting part and form a hermetic atmosphere within the chamber; and a pressure part placed within the chamber for uniformly applying a pressure on the entire surface of the seed crystal.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: March 3, 2009
    Assignee: Bridgestone Corporation
    Inventors: Daisuke Kondo, Takuya Monbara
  • Patent number: 7494545
    Abstract: An epitaxial deposition process including a dry etch process, followed by an epitaxial deposition process is disclosed. The dry etch process involves placing a substrate to be cleaned into a processing chamber to remove surface oxides. A gas mixture is introduced into a plasma cavity, and the gas mixture is energized to form a plasma of reactive gas in the plasma cavity. The reactive gas enters into the processing chamber and reacts with the substrate, forming a thin film. The substrate is heated to vaporize the thin film and expose an epitaxy surface. The epitaxy surface is substantially free of oxides. Epitaxial deposition is then used to form an epitaxial layer on the epitaxy surface.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: February 24, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Andrew Lam, Yihwan Kim, Satheesh Kuppurao, See-Eng Phan, Xinliang Lu, Chien-Teh Kao
  • Patent number: 7494546
    Abstract: The present invention describes use of electron beam evaporation method for fabrication of group III-nitride thin films. The fabricated thin films found to have desirable crystalline and optical properties. These films and their properties could be used for protecting electronic devices under space radiation applications such as solar cell operating in space.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: February 24, 2009
    Assignee: Blue Wave Semicodnuctors, Inc.
    Inventors: Ratnakar D. Vispute, Evan Bertrue Jones
  • Patent number: 7491270
    Abstract: A heat shielding member 20 that thermally shields the periphery of a single crystal 16 used in a Czochralski single crystal pulling device that pulls the single crystal 16 from a melt 15 that is collected in a crucible 10 is disclosed. The heat shielding member 20 is provided with an approximately cylindrical main body portion 21 arranged so as to surround the single crystal 16, with a lower end portion thereof extending to the vicinity of the melt 15, and an approximately annular bottom plate portion 22 that extends in the diameter direction from the bottom end portion of the main body portion 21 to cover the melt. The bottom plate portion 22 is attached to the main body portion 21 in the state of being severed in the circumferential direction at at least one location. With this constitution it is possible to provide a heat shielding member with superior durability and a single crystal pulling device that employs the heat shielding member.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: February 17, 2009
    Assignee: Sumco Corporation
    Inventors: Hitoshi Sasaki, Syunji Kuragaki
  • Patent number: 7481880
    Abstract: A method of crystallizing amorphous silicon includes forming an amorphous silicon layer on a substrate, placing a mask over the substrate including the amorphous silicon layer, and applying a laser beam onto the amorphous silicon layer through the mask to form a first crystallized region, the laser beam having an energy intensity high enough to completely melt the amorphous silicon layer, wherein the mask comprises a base substrate, a phase shift layer on the base substrate, having a plurality of first stripes having a first width separated by slits, and a blocking layer overlapping the phase shift layer, having a plurality of second stripes having a second width narrower than the first width, the second stripes being parallel to the first stripes.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: January 27, 2009
    Assignee: LG Display Co., Ltd.
    Inventor: Kwang-Jo Hwang
  • Patent number: 7476274
    Abstract: The method provides a uniform low-stress single crystal in a predetermined crystal orientation. The method of making it includes immersing a single crystal held at a temperature under its melting point in a melt of crystal raw material and drawing it from the melt to grow the crystal. The crystal and/or melt are rotated relative to each other during the crystal growth. A planar phase boundary surface is maintained by detecting at least one characteristic surface temperature in an interior of a crucible containing the melt and controlling temperature fluctuations by increasing or decreasing the rotation speed when they occur. The single crystals obtained by this method have a diameter of at least 50 mm and no visible growth strips in a fishtail pattern when a 2-mm thick sample is observed between crossed polarizers. Optical elements suitable for DUV lithography can be made from these crystals.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: January 13, 2009
    Assignee: Schott AG
    Inventors: Gunther Wehrhan, Lutz Parthier, Daniel Rytz, Klaus Dupre, Lothar Ackermann
  • Patent number: 7473314
    Abstract: A silicon single crystal is grown using the Czochralski method. During the crystal growth, a thermal stress is applied to at least a portion of the silicon single crystal. A gaseous substance containing hydrogen atoms is used as an atmospheric gas for growing the crystal.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: January 6, 2009
    Assignee: Sumco Corporation
    Inventors: Shuichi Inami, Nobumitsu Takase, Yasuhiro Kogure, Ken Hamada, Tsuyoshi Nakamura
  • Patent number: 7473317
    Abstract: A crystal growth crucible made of boron nitride includes a cylindrical tip portion for accommodating a seed crystal, and a cylindrical straight-body portion for growing a crystal, which is formed above the tip portion and has a diameter larger than that of the tip portion. Thickness T1 of the tip portion and thickness T2 of the straight-body portion satisfy a condition of 0.1 mm?T2<T1?5 mm, and inside diameter D2 and length L2 of the straight-body portion satisfy conditions of 100 mm<D2 and 2<L2/D2<5.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: January 6, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Yoshiaki Hagi