Patents Examined by Felisa C. Hiteshew
  • Patent number: 7470326
    Abstract: The apparatus for manufacturing a silicon single crystal includes: a crucible for storing molten silicon; a pulling-up device for pulling up a silicon single crystal from the molten silicon in the crucible to grow; a detecting device for detecting a position of the crucible in a vertical direction; and a control device for controlling a pulling rate for the silicon single crystal by the pulling-up device, based on the detected position of the crucible.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: December 30, 2008
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Youji Suzuki, Satoshi Sato
  • Patent number: 7470323
    Abstract: The Czochralski method is used for producing p?-doped and epitaxially coated semiconductor wafers from silicon, wherein a silicon single crystal is pulled, and during the pulling is doped with boron, hydrogen and nitrogen, and the single crystal thus obtained is processed to form p?-doped semiconductor wafers which are epitaxially coated.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: December 30, 2008
    Assignee: Siltronic AG
    Inventors: Wilfried von Ammon, Katsuhiko Nakai, Martin Weber, Herbert Schmidt, Atsushi Ikari
  • Patent number: 7465353
    Abstract: It is to provide a method for growing an epitaxial crystal in which the doping conditions are set when an epitaxial crystal having a desired carrier concentration is grown. A method for growing an epitaxial crystal while a dopant is added to a compound semiconductor substrate, comprises: obtaining a relation between an off angle and a doping efficiency with regards to the same type of compound semiconductor substrate in advance; and setting a doping condition for carrying out an epitaxial growth on the compound semiconductor substrate based on the obtained relation and a value of the off angle of the subtrate.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: December 16, 2008
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Manabu Kawabe, Ryuichi Hirano
  • Patent number: 7465355
    Abstract: A device for manufacturing a single-crystal solid phase by solidification of a liquid phase, comprising: a crucible capable of containing the solid phase and the liquid phase, the liquid phase being in contact with the crucible and the solid phase being separated from the crucible by an interstice; and a heating mechanism for heating the liquid phase capable of creating a thermal gradient at the level of an interface between the liquid phase and the solid phase, electromagnetic field generation, distinct from the heating mechanism, for applying an electromagnetic pressure on the junction surface of the liquid phase at the level of the interface comprising at least one spiral surrounding the crucible, and placed opposite to the area in which the interface forms in operation.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: December 16, 2008
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Thierry Duffar, Annie Fournier-Gagnoud
  • Patent number: 7462238
    Abstract: A crystal growth apparatus comprises a reaction vessel holding a melt mixture containing an alkali metal and a group III metal in a vessel space thereof, a porous member holding a metal melt by a surface tension thereof in a path through which a vapor of the alkali metal in contact with the metal mixture in the vessel space escapes to an external space, the porous member further supplying a nitrogen source gas fed from outside thereto further to the reaction vessel therethrough and through the metal melt by a pressure difference formed between the vessel space in the reaction vessel and the external space, and a heating apparatus heating the melt mixture to a crystal growth temperature.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: December 9, 2008
    Assignees: Ricoh Company, Ltd., Japan Atomic Energy Agency
    Inventors: Seiji Sarayama, Hirokazu Iwata, Akihiro Fuse, Kuniaki Ara, Junichi Saito
  • Patent number: 7459023
    Abstract: The present invention provides a method for producing a Group III nitride compound semiconductor crystal, the semiconductor crystal being grown through the flux method employing a flux. At least a portion of a substrate on which the semiconductor crystal is to be grown is formed of a flux-soluble material. While the semiconductor crystal is grown on a surface of the substrate, the flux-soluble material is dissolved in the flux from a surface of the substrate that is opposite the surface on which the semiconductor crystal is grown. Alternatively, after the semiconductor crystal has been grown on a surface of the substrate, the flux-soluble material is dissolved in the flux from a surface of the substrate that is opposite the surface on which the semiconductor crystal has been grown. The flux-soluble material is formed of silicon.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: December 2, 2008
    Assignees: Toyoda Gosei Co., Ltd., NGK Insulators, Ltd., Osaka University
    Inventors: Shiro Yamazaki, Koji Hirata, Katsuhiro Imai, Makoto Iwai, Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Fumio Kawamura, Yuji Yamada
  • Patent number: 7459025
    Abstract: Systems and methods for transferring a thin film from a substrate onto another substrate, a layer of the same area as the substrate, of a thickness from sub-micron to tens of micron, and of the thickness and flatness required by VLSI and MEMS applications, and with sufficiently low defect density in the transferred layer are disclosed. The method enables separating a solid layer from a supply substrate and optionally transferring the solid layer onto a target substrate. The method generally includes providing the solid layer on a hydrogen recombination region containing hydrogen-recombination-dopant at a concentration higher than that of the solid layer. The supply substrate includes the solid layer, a mother substrate, and the hydrogen recombination region. The hydrogen recombination region may form a part of the mother substrate or may be separate therefrom.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: December 2, 2008
    Inventor: Tien-Hsi Lee
  • Patent number: 7459026
    Abstract: A light irradiation apparatus includes a light modulation element which has a phase step having a phase difference substantially different from 180°, an illumination optical system which illuminates the light modulation element, and an image formation optical system which forms, on an irradiation surface, a light intensity distribution based on a light beam phase-modulated by the light modulation element. The illumination optical system illuminates the light modulation element with an illumination light beam inclined in a direction normal to a step line of the phase step.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: December 2, 2008
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Yukio Taniguchi, Masakiyo Matsumura
  • Patent number: 7455730
    Abstract: A method for producing a single crystal includes supplying a vapor gas from silicon carbide as a raw material to a seed crystal formed of a silicon carbide single crystal to grow the seed crystal. The seed crystal is disposed in a part of crystal growth, with a crystal face of the seed crystal inclined relative to a (0001) plane or (000-1) plane, thereby making crystal growth.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: November 25, 2008
    Assignee: Showa Denko K.K.
    Inventor: Naoki Oyanagi
  • Patent number: 7455731
    Abstract: A polycrystalline silicon rod according to present invention has a structure for hanging of polycrystalline silicon rods to each other end-to-end, so that the efficiency of melting polycrystalline silicon can be increased considerably. A polycrystalline silicon rod obtained by entirely or partially removing a peripheral portion from the rod to leave a central portion, and processing the central portion, preferably, the peripheral portion is removed by grinding in an amount corresponding to 10 to 60% of the diameter of the rod, and then subjected to groove-forming processing. This makes annealing unnecessary.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: November 25, 2008
    Assignee: Mitsubishi Materials Corporation
    Inventors: Mamoru Nakano, Yukio Yamaguchi, Teruhisa Kitagawa, Rikito Sato, Naoki Hatakeyama
  • Patent number: 7452420
    Abstract: An apparatus for producing diamond in a deposition chamber including a heat-sinking holder for holding a diamond and for making thermal contact with a side surface of the diamond adjacent to an edge of a growth surface of the diamond, a noncontact temperature measurement device positioned to measure temperature of the diamond across the growth surface of the diamond and a main process controller for receiving a temperature measurement from the noncontact temperature measurement device and controlling temperature of the growth surface such that all temperature gradients across the growth surface are less than 20° C.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: November 18, 2008
    Assignees: Carnegie Institution of Washington, The UAB Research Foundation
    Inventors: Russell J. Hemley, Ho-kwang Mao, Chih-shiue Yan, Yogesh K. Vohra
  • Patent number: 7452419
    Abstract: A method is provided for operating a crystallization system comprising identifying a screen storage plate from among the plurality of screen storage plates stored in a screen storage station, each screen storage plate having a plurality of wells that contain a screen solution and at least a portion of the screen storage plates having a selection of screen solutions that is different from the selection of screen solutions held in other screen storage plates; having a transport mechanism transport the identified screen storage plate to a screen replicator; transporting a plurality of crystallization plates to the screen replicators; and having the screen replicator transfer the screen solutions from the identified screen storage plate to the plurality of crystallization plates.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: November 18, 2008
    Assignee: Takeda San Diego, Inc.
    Inventors: Laurent Martin, John W. Palan
  • Patent number: 7449065
    Abstract: A method and the benefits resulting from the product thereof are disclosed for the growth of large, low-defect single-crystals of tetrahedrally-bonded crystal materials. The process utilizes a uniquely designed crystal shape whereby the direction of rapid growth is parallel to a preferred crystal direction. By establishing several regions of growth, a large single crystal that is largely defect-free can be grown at high growth rates. This process is particularly suitable for producing products for wide-bandgap semiconductors, such as SiC, GaN, AlN, and diamond. Large low-defect single crystals of these semiconductors enable greatly enhanced performance and reliability for applications involving high power, high voltage, and/or high temperature operating conditions.
    Type: Grant
    Filed: December 2, 2006
    Date of Patent: November 11, 2008
    Assignee: Ohio Aerospace Institute
    Inventors: J. Anthony Powell, Philip G. Neudeck, Andrew J. Trunek, David J. Spry
  • Patent number: 7449064
    Abstract: An AlN single crystal is grown by pressurizing a melt including at least gallium, aluminum and sodium in an atmosphere containing nitrogen. Preferably, the AlN single crystal is grown under a nitrogen partial pressure of 50 atms or lower and at a temperature in a range of 850° C. to 1200° C.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: November 11, 2008
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Iwai, Katsuhiro Imai
  • Patent number: 7449066
    Abstract: An apparatus for fabricating a GaN single crystal and a fabrication method for producing GaN single crystal ingot are provided. The apparatus includes: a reactor including a ceiling, a floor and a wall with a predetermined height encompassing an internal space between the ceiling and the floor, wherein the ceiling is opposite to the floor; a quartz vessel on the floor containing Ga metal; a mount installed on the ceiling on which a GaN substrate is mounted, the GaN substrate being opposite to the quartz vessel; a first gas supplying unit supplying the quartz vessel with hydrogen chloride (HCl) gas; a second gas supplying unit supplying the internal space of the reactor with ammonia (NH3) gas; and a heating unit installed in conjunction with the wall of the reactor for heating the internal space, wherein the lower portion of the internal space is heated to a higher temperature than the upper portion.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: November 11, 2008
    Assignee: Samsung Corning Co., Ltd.
    Inventor: Jai-yong Han
  • Patent number: 7449063
    Abstract: Previously a number of techniques have been used in order to form single crystal or pre-determined crystallography components and articles. Each one of these techniques has its own particular problems, including susceptibility to error. By utilisation of a bi-crystal experiment to determine melt-back length LM and by consideration of the ingress distance d from potential initiation nucleation points on a perimeter of a seed crystal, it is possible to determine a maximum ingress length d. By ensuring that the maximum ingress length d is less than or equal to a seed crystal diameter R, it is possible to project locus from potential nucleation points C1, C2 in terms of potential radii for stray grain propagation. As the seed crystal will have a known crystalline orientation, it will be possible to consider two divergent growth curves of the crystal in terms of the stray grains propagating from the point C1, C2.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: November 11, 2008
    Assignee: Rolls-Royce plc
    Inventors: Neil J D'Souza, Philip A Jennings, Keerthi Devendra
  • Patent number: 7445672
    Abstract: Heat treatment is conducted at a predetermined temperature of not less than 1250° C. on an underlying substrate obtained by epitaxially forming a first group-III nitride crystal on a predetermined base as an underlying layer. Three-dimensional fine irregularities resulting from crystalline islands are created on the surface of the underlying layer. A second group-III nitride crystal is epitaxially formed on the underlying substrate as a crystal layer. There are a great many fine voids interposed at the interface between the crystal layer and underlying substrate. The presence of such voids suppresses propagation of dislocations from the underlying substrate, which reduces the dislocation density in the crystal layer. As a result, the crystal layer of good crystal quality can be obtained.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: November 4, 2008
    Assignees: NGK Insulators, Ltd., Dowa Mining Co., Ltd.
    Inventor: Tomohiko Shibata
  • Patent number: 7442355
    Abstract: An indium phosphide substrate for semiconductor devices is obtained as follows. In order to have the direction of growth of the crystal in the <100> orientation, a seed crystal having a specified cross-sectional area ratio with the crystal body is placed at the lower end of a growth container. The growth container housing the seed crystal, indium phosphide raw material, dopant, and boron oxide is placed in a crystal growth chamber. The temperature is raised to at or above the melting point of indium phosphide. After melting the boron oxide, indium phosphide raw material, and dopant, the temperature of the growth container is lowered in order to obtain an indium phosphide monocrystal having a low dislocation density and a uniform dopant concentration on the wafer as well as in the depth direction.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: October 28, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Tomohiro Kawase
  • Patent number: 7442253
    Abstract: The present invention is directed to a process for producing a silicon wafer which, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, may form an ideal, non-uniform depth distribution of oxygen precipitates and may additionally contain an axially symmetric region which is substantially free of agglomerated intrinsic point defects. The process either comprises exposing the wafer's front and back surfaces to different atmospheres, or thermally annealing two wafers in a face-to-face arrangement.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: October 28, 2008
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Marco Cornara, Daniela Gambaro, Massimiliano Olmo, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 7442255
    Abstract: The bottom of the crucible has much greater thermal transfer properties, parallel to an axis substantially perpendicular to the bottom, than those of the side walls. The bottom and side walls are formed by materials having the same main chemical constituents. The bottom can be transparent to infrared radiation and the side walls opaque to infrared radiation. The bottom can be made of amorphous silica and the side walls of opaque quartz ceramic. The crucible can also be made of graphite. The device can comprise a graphite felt, arranged between the bottom of the crucible and cooling means, and compression means of the graphite felt. It is thus possible to define a temperature gradient comprised between 8° C./cm and 30° C./cm in the liquid phase.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: October 28, 2008
    Assignees: Apollon Solar, Cyberstar, EFD Induction SA
    Inventors: Roland Einhaus, Francois C. Lissalde, Pascal Rivat