Patents Examined by Frances P. Oropeza
  • Patent number: 7236822
    Abstract: A method for the treatment of obesity or other disorders, by wireless electrical activation or inhibition of the sympathetic nervous system. This activation or inhibition can be accomplished by wirelessly stimulating the greater splanchnic nerve or other portion of the sympathetic nervous system using a wireless electrode inductively coupled with a radiofrequency field. The source of radiofrequency energy may be internal or external to the patient. This nerve activation can result in reduced food intake and increased energy expenditure.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: June 26, 2007
    Assignee: Leptos Biomedical, Inc.
    Inventor: John D. Dobak, III
  • Patent number: 7228171
    Abstract: Analytical methods and devices for analyzing biological signals, for example, electrical signals from the brain to determine whether an abnormal condition caused by a medical condition exists. In one embodiment, the medical disorder may be epilepsy. The analytical methods include wavelet analysis and neighbor cross-correlation count, which is a frequency specific measure of the degree of correlation of a single channel of data with respect to its neighbors. The devices according to the invention are programmed to include the analytical methods and to administer treatment regimens such as electrical stimulation, heating, cooling and medication as needed.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: June 5, 2007
    Assignee: The Johns Hopkins University
    Inventors: Ronald P. Lesser, W. Robert S. Webber
  • Patent number: 7225029
    Abstract: An implantable cardiac therapy device is constructed with a housing that defines first and second chambers. The first chamber holds cardiac therapy circuitry, such as sensing and/or stimulation circuitry. The second chamber holds high-frequency circuitry that transmits and receives high-frequency signals used in communication with external devices. The dual-chamber housing allows the implantable cardiac therapy device to handle high-frequency signals in an isolated environment, thereby enabling longer range telemetry, without interfering with the cardiac therapy circuitry. The implantable cardiac therapy device can be linked to a cardiac network of knowledge workers that evaluate the data generated by the device and provide instructions to remotely program the device.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: May 29, 2007
    Inventors: Balakrishnan Shankar, Matthew Whitlock, Mark W. Kroll
  • Patent number: 7218964
    Abstract: A method and apparatus to provide therapy to a patient for protecting cardiac tissue from insult is disclosed. The method comprises delivering closed loop electrical stimulation to one or more predetermined portions of a portion of excitable tissue of the spinal cord of a patient; and monitoring one or more physiologic indices of the body. That is, a closed-loop feedback controller is used to apply electrical stimulation to preselected regions of the spinal cord of a patient's body based upon one or more aspects of the physiologic indices.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: May 15, 2007
    Assignee: Medtronic, Inc.
    Inventors: Michael R. S. Hill, Gary W. King, Thomas J. Mullen, Xiaohong Zhou
  • Patent number: 7218965
    Abstract: An ADI/R mode is implemented using an intelligent pacing system to continually monitor ventricular response. This ensures AV conduction whenever possible so as to gain all the benefits of cardiac contractile properties resulting from native R-waves. In the event where AV conduction is blocked, the pacing mode is switched to a DDD/R mode to ensure a paced R-wave. Thereafter, subsequent to a completed interval of a P-wave, ADI/R pacing resumes to monitor ventricular response.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: May 15, 2007
    Assignee: Medtronic, Inc.
    Inventors: David Casavant, Paul Belk, Thomas J. Mullen, John C. Stroebel
  • Patent number: 7209790
    Abstract: The invention is directed to a programmer for communication with different medical devices that utilize different telemetry communication techniques. The programmer receives telemetry signals from a given medical device, and selects an appropriate communication mode, which can be pre-programmed into the programmer as one of a plurality of possible communication modes. The programmer can configure itself for communication with a given medical device based on the telemetry signal it receives. Specifically the programmer is implemented as a software based, power efficient receiver/transmitter based upon an inexpensive, simple motor-controller DSP.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: April 24, 2007
    Assignee: Medtronic, Inc.
    Inventors: David L. Thompson, Koen J. Weijand, Daniel R. Greeninger
  • Patent number: 7209792
    Abstract: An RF-energy modulation system dynamically adjusts tuned receiving circuits within a plurality of slave devices, thereby regulating the level of power reception in each slave device. The slave devices receive power from a single master device, through coupling of a primary antenna in the master device with a secondary antenna in each slave device. The amount of the power received by each slave device is a function of the antenna separation distance, and is thus different at each slave device location. The RF-energy modulation system monitors the power requirements of the slave device within which the modulation system is included, and modulates the tuning of the secondary antenna to maintain the proper power reception level. Advantageously, such modulation controls the power reception by the slave device, versus dissipating energy already received by the slave device.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: April 24, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: Jordi Parramon, Goran N. Marnfeldt
  • Patent number: 7209789
    Abstract: A method of activating at least two electrodes in a multichannel electrode array uses channel specific sampling sequences. More particularly, a channel specific sampling sequence is defined for each electrode, the sequence having a particular duration, pulse amplitude distribution, and number of pulses. A weighting factor is applied to the channel specific sampling sequence. Each electrode in the multichannel electrode array is then simultaneously activated using sign-correlated pulses. The sign-correlated pulses are based on parameters of spatial channel interaction reflecting geometric overlapping of electrical fields from each electrode, wherein calculating the amplitudes of the sign-correlated pulses includes compensating for geometric overlapping of electrical fields from each electrode. Furthermore, the sign-correlated pulses are based on each electrode's weighted channel specific sampling sequence.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: April 24, 2007
    Assignee: MED-EL Elektromedizinische Geraete GmbH.
    Inventor: Clemens M. Zierhofer
  • Patent number: 7206635
    Abstract: A method and apparatus for providing a therapy to the patient that includes a therapy component configured to provide the therapy to the patient, sensing circuitry sensing a parameter of the patient, and a microprocessor coupled to the therapy component and the sensing circuitry to determine onset of a first state of the patient in response to the sensed physiologic parameter, and to determine whether the onset of the first state is detected for a predetermined time period.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: April 17, 2007
    Assignee: Medtronic, Inc.
    Inventors: Yong Kyun Cho, Donald N. Jensen, Luc R. Mongeon
  • Patent number: 7203535
    Abstract: An implantable cardioverter/defibrillator includes a tachycardia detection system that detects one-to-one (1:1) tachycardia, which is a tachycardia with a one-to-one relationship between atrial and ventricular contractions. When the 1:1 tachycardia is detected, the system discriminates ventricular tachycardia (VT) from supraventricular tachycardia (SVT) based on analysis of a cardiac time interval. Examples of the cardiac time interval include an atrioventricular interval (AVI) and a ventriculoatrial interval (VAI). A template time interval is created during a known normal sinus rhythm. The system measures a tachycardia time interval after detecting the 1:1 tachycardia, and indicates a VT detection if the tachycardia time interval differs from the template time interval by at least a predetermined percentage of the template time interval.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: April 10, 2007
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: William Hsu, Robert J. Sweeney, Eric G. Lovett
  • Patent number: 7194298
    Abstract: The present invention can be used in conjunction with a wearable digital wireless ECG monitoring system. A full ECG curve is received by a central module. The central module is worn on the belt like a cellular or a pager. It is made of four different devices operating together: a handheld computer, a GPS, a cellular board and a multiplexing device. The system wirelessly receives the complete cardiac curve from the ECG and is able to distinguish not only the beat rate, but also to analyze any abnormal heart contractions. In fact, most common heart diseases are not related to the acceleration or deceleration of the heart rate. In case of problem detected by the central unit, the system automatically calls a central station and can send the GPS positioning and ECG monitoring of the patient with the detected anomaly data. Voice communication with the patient or the passers by is also possible.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: March 20, 2007
    Assignee: Medicale Intelligence Inc.
    Inventors: Louis Massicotte, Jean-François Montplaisir
  • Patent number: 7177689
    Abstract: An apparatus and method for verifying capture by a pacing pulse in which a test depolarization waveform recorded during a pacing event is compared with a template waveform representing capture by the pacing pulse. Capture verification in this manner may be used in pacemakers having multiple pacing channels for the atrial and/or ventricles where the multiple paces can interfere with conventional sensing of evoked responses in order to verify capture.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: February 13, 2007
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David Ternes, David J. Yonce
  • Patent number: 7167756
    Abstract: An implantable medical device having an implantable power source such as a rechargeable lithium ion battery. The implantable medical device includes a recharge module that regulates the recharging process of the implantable power source using closed-loop feedback control. The recharge module includes a recharge regulator, a recharge measurement device monitoring at least one recharge parameter, and a recharge regulation control unit for regulating the recharge energy delivered to the power source in response to the recharge measurement device. The recharge module adjusts the energy provided to the power source to ensure that the power source is being recharged under safe levels.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: January 23, 2007
    Assignee: Medtronic, Inc.
    Inventors: Nathan A. Torgerson, James E. Riekels
  • Patent number: 7158832
    Abstract: Devices, systems and methods by which the blood pressure, nervous system activity, and neurohornonal activity may be selectively and controllably reduced by activating baroreceptors. A baroreceptor activation device is positioned near a baroreceptor, preferably in the carotid sinus. The baroreceptor activation device may utilize electrodes to activate the baroreceptors. The electrodes may be adapted for connection to the carotid arteries at or near the carotid sinus, and may be designed to minimize extraneous tissue stimulation.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: January 2, 2007
    Assignee: CVRx, Inc.
    Inventors: Robert S. Kieval, Bruce J. Persson, David J. Serdar, Peter T. Keith, Eric D. Irwin
  • Patent number: 7155291
    Abstract: Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system that transfers energy from one side of a physical boundary to another side of the boundary. In one example, a power supply and a primary winding are located on a first side of a physical boundary (e.g., external to a body), and a secondary winding and the load are located on a second side of the physical boundary (e.g., internal to the body). A primary voltage across the primary winding is regulated so as to provide a sufficiently stable output power to the load notwithstanding changes in the load and/or changes in a relative position of the primary winding and the secondary winding. One aspect of the invention relates to energy transfer methods and apparatus for use in connection with the human body. In particular, one example of the invention includes a transcutaneous energy transfer (TET) system for transferring power from a power supply external to the body to a device implanted in the body.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: December 26, 2006
    Assignee: Abiomed, Inc.
    Inventors: Farhad Zarinetchi, Stephen J. Keville
  • Patent number: 7149586
    Abstract: The present invention is an implantable electrode array having electrodes with variable pitch and variable size. Electrode arrays of the prior art provide electrodes with a common spacing and size. However, this is not how the human body is arranged. As an example, the retina has closely spaced retinal receptors near the fovea. Those receptors are spaced farther apart, farther away from the fovea. Further, the amount of electrical current required to stimulate the perception of light increases with distance from the fovea. Hence, larger electrodes are required to transfer the necessary current farther away from the fovea.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: December 12, 2006
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Greenberg, Richard Williamson, Mark Humayan
  • Patent number: 7139615
    Abstract: A single separable electrode that includes a plurality of separable electrically connected electrode sections.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: November 21, 2006
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: Thomas Solosko, Gregory D. Brink, Joel Rosenwelg, Fred Borgenicht
  • Patent number: 7130683
    Abstract: A preferred atrial-based pacing method and apparatus is provided using an intelligent cardiac pacing system to having the ability to continue atrial-based pacing as long as relatively reliable AV conduction is present. In the event that such relatively reliable AV conduction is not present, mode switching to a DDD/R or a DDI/R pacing mode while continually biased to mode switch back to atrial-based pacing. The standard or relatively reliable AV conduction may be changed either automatically or manually. This increases pacing that utilizes natural AV conduction whenever possible so as to gain all the benefits of cardiac contractile properties resulting therefrom, while tolerating the occasional missed ventricular depolarization (i.e., non-conducted P-wave). In the event where relatively reliable AV conduction is not present, the pacing mode is switched to a DDD/R mode while detecting a return of the relatively reliable AV conduction (and resulting mode switch to preferred atrial-based pacing).
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: October 31, 2006
    Assignee: Medtronic, Inc.
    Inventors: David A. Casavant, Paul Belk, Thomas J. Mullen, John C. Stroebel
  • Patent number: 7120503
    Abstract: A disposable internal defibrillator paddle providing for a more economical and easier defibrillation procedure than non disposable paddles. The disposable paddle contains: (a) a handle attached to a shaft attached to a spoon, the spoon having a receiving unit, and the handle, the shaft, and the spoon are all made of non conducting material; and (b) an electrode plate attaching onto the receiving unit of the spoon.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: October 10, 2006
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: James L. Miller, Joan A. Kelly
  • Patent number: 7108711
    Abstract: A method and apparatus for protecting an electronic implantable medical device prior to it being implanted in a patient's body. The apparatus affords protection against electronic component damage due to electrostatic discharge and/or physical damage due to improper handling. The apparatus is comprised of a circuit board having a conductive surface for receiving and releasably grasping the electrodes of the medical device to support the device's housing proximate to the surface of the circuit board. Two conductive paths are formed on the circuit board extending between two conductive surfaces for shunting electrostatic discharge currents to prevent such currents from passing through the device's electronic circuitry. The conductive paths include oppositely oriented diodes, preferably comprising diodes which emit light (i.e., LEDs) when current passes therethrough. Additionally, an external monitor/generator is provided to enable functional testing of the medical device.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: September 19, 2006
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Martin J. Vogel, Richard J. Nelson, Robert A. Firth, Anthony D. Falco, Joseph H. Schulman, Lung-Hsi Chu, Lee J. Mandell