Patents Examined by Frederick Wenderoth
  • Patent number: 11287493
    Abstract: Embodiments of the present invention provide a magnetic resonance imaging method and system and a computer-readable storage medium.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: March 29, 2022
    Assignee: GE Precision Healthcare LLC
    Inventors: Longqing Wang, Weinan Tang, Kun Wang, Hongbin Wang, Yongchuan Lai, Jiabin Yao
  • Patent number: 11287502
    Abstract: Techniques are disclosed for recording magnetic resonance data of an examination object with a magnetic resonance device. A magnetic resonance sequence is used to record the magnetic resonance data from at least two slices of a slice stack, and at least two temporally separate radio frequency pulses are output within an excitation time frame. A slice thickness of the slices, which is increased by an enlargement factor that is greater than one compared with a nominal slice thickness, is used for at least one, but not all, of the radio frequency pulses. The enlargement factor is selected as a function of a distance value describing the distance between two adjacent slices of the slice stack, such that the increased slice thickness does not result in the resulting excitation region of a slice extending into the adjacent slice.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: March 29, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Flavio Carinci, Dominik Paul, Mario Zeller
  • Patent number: 11280865
    Abstract: The invention provides for a magnetic resonance imaging system (100). Machine executable instructions (140) cause a processor controlling the magnetic resonance imaging system to control (200) the magnetic resonance imaging system with the pulse sequence commands to acquire two point Dixon magnetic resonance data and single point Dixon magnetic resonance data; calculate (202) a first resolution magnetic field inhomogeneity map (148) using the two point Dixon magnetic resonance data; calculate (204) a second resolution magnetic field inhomogeneity map (154) by interpolating the first resolution magnetic inhomogeneity map to the second resolution; and calculate (206) a second resolution water image (156) and a second resolution fat image (158) using the single point Dixon magnetic resonance imaging data and the second resolution magnetic field inhomogeneity map. The first resolution is lower than the second resolution.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: March 22, 2022
    Assignee: Koninklijke Philips N.V.
    Inventor: Holger Eggers
  • Patent number: 11280866
    Abstract: A magnetic resonance imaging method includes performing an inversion pulse sequence using an MRI system, the inversion pulse sequence producing an inversion recovery period, and during the inversion recovery period: (i) performing a longitudinal T2 encoding pulse sequence using the MRI system; (ii) acquiring a post longitudinal T2 encoding pulse sequence image signal block immediately following the longitudinal T2 encoding pulse sequence using the MRI system; and (iii) acquiring an additional image signal block either before the longitudinal T2 encoding pulse sequence or following the acquiring of the post longitudinal T2 encoding pulse sequence image signal block using the MRI system. The method further include generating calculated image data based on at least the post longitudinal T2 encoding pulse sequence image signal block using a self-correcting normalization image combination scheme.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: March 22, 2022
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Jullie W. Pan, Chan-Hong Moon, Hoby Hetherington
  • Patent number: 11280870
    Abstract: In a method for simultaneous generation of measurement data of at least two subvolumes of an examination object by means of a slice multiplexing EPI-method, after an RF excitation pulse, at least three navigator signals, but a total of at least one navigator signal per possible polarity and per subvolume to be simultaneously recorded, are recorded in the absence of phase encoding gradients. From the recorded navigator signals, subvolume-specific correction data is determined, which can be used in a reconstruction of image data from acquired raw data for correcting shifts caused by phase errors in the MR raw data.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: March 22, 2022
    Assignee: Siemens Healthcare GmbH
    Inventor: Mario Zeller
  • Patent number: 11269035
    Abstract: A method for magnetic resonance imaging (MRI) may include cause, based on a pulse sequence, a magnetic resonance (MR) scanner to perform a scan on an object. The pulse sequence may include a steady-state sequence and an acquisition sequence that is different from the steady-state sequence. The steady-state sequence may correspond to a steady-state phase of the scan in which no MR data is acquired. The acquisition sequence may correspond to an acquisition phase of the scan in which MR data of the object is acquired. The method may also include generating one or more images of the object based on the MR data.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: March 8, 2022
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventor: Xiaomao Gong
  • Patent number: 11269749
    Abstract: A system for monitoring a health status of a gradient coil disposed in a magnetic resonance imaging system is provided. The system includes one or more sensors and a controller. The one or more sensors are operative to obtain one or more parameter readings of the gradient coil, wherein the one or more parameter readings include at least one of an acoustic measurement and a back electromotive force measurement. The controller is in electronic communication with the one or more sensors and operative to generate the health status based on at least one of the acoustic measurement and the back electromotive force measurement.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: March 8, 2022
    Assignee: General Electric Company
    Inventors: Erman Citirik, Garrett Astary, Jean-Baptiste Mathieu, Derek Seeber, Namratha Reganti
  • Patent number: 11262426
    Abstract: A system and method for simultaneous multi-slice nuclear spin tomography is provided which requires no sensitivity profile of a receiving coil along a slice axis. A pulse space region to be sampled can be specified. A first pulse space dimension (ky) can be assigned to a first phase-encoded axis and a second pulse space dimension (kz) can be assigned to a second phase-encoded axis and the second phase-encoded axis corresponds to the slice axis. A sampling scheme can also be specified, and a complete sampled can be provided along the second pulse space dimension (kz). A magnetic resonance scan can then be carried out within the pulse space region to be sampled based on the sampling scheme and respective phase-encodings of the first and second phase-encoded axis.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: March 1, 2022
    Assignee: Siemens Healthcare GmbH
    Inventor: Thorsten Feiweier
  • Patent number: 11255941
    Abstract: A method and apparatus are provided to perform controlled aliasing in parallel imaging (CAIPI) using time shifts between the radio frequency (RF) excitation pulses and the waveform of the slice-select gradient field to shift respective sampling points within the two-dimensions of k-space corresponding to phase encoding. Thus, a CAIPI sampling pattern is generated using time shifts, rather than by modulating the RF excitation pulses or gradient fields.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: February 22, 2022
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventor: Andrew James Wheaton
  • Patent number: 11249159
    Abstract: Systems and methods for high-resolution STAGE imaging can include acquisition of relatively low-resolution k-space datasets with two separate multi-echo GRE sequences. The multi-echo GRE sequences can correspond to separate and distinct flip angles. Various techniques for combining the low-resolution k-space datasets to generate a relatively high-resolution k-space are described. These techniques can involve combining low-resolution k-space datasets associated with various echo types. The STAGE imaging approaches described herein allow for rapid imaging, enhanced image resolution with relatively small or no increase in MR data acquisition time.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: February 15, 2022
    Assignee: SPINTECH, INC.
    Inventors: E. Mark Haacke, Yongsheng Chen
  • Patent number: 11237235
    Abstract: A method for operating a magnetic resonance imaging (MRI) system that includes: accessing data indicating a first region for imaging a portion of a subject, the portion being placed in a main magnet of the MRI system and the main magnet generating a magnetic field; selecting, from a group of available shimming coils, a first subset of shimming coils arranged and configured such that, when the shimming coils in the first subset are driven, a homogeneity of the magnetic field at the first region is increased; and driving the shimming coils in the selected first subset of shimming coils without driving other shimming coils in the group of available shimming coils such that the homogeneity of the magnetic field at the first region increases relative to the homogeneity of the magnetic field at the first region when the shimming coils of the selected first subset are not driven.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: February 1, 2022
    Assignee: SYNAPTIVE MEDICAL INC.
    Inventors: Chad Tyler Harris, Philip J. Beatty, Alexander Gyles Panther, Jeff Alan Stainsby, David Mark Deschenes
  • Patent number: 11237238
    Abstract: In a method for controlling a magnetic resonance tomography system for a Magnetic Resonance Fingerprinting (MRF) measurement: a dictionary group including at least two dictionaries is provided/created, each of the at least two dictionaries containing a multiplicity of different intensity profiles with a specific sampling scheme; a preliminary recording of magnetic resonance tomography (MRT) measurements is created; a sampling scheme is determined/defined based on the preliminary recording; a dictionary is selected from the at least two dictionaries of the dictionary group based on the preliminary recording; and an MRF measurement is performed using the defined sampling scheme and an MRF evaluation based on the selected dictionary.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: February 1, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Ralf Kartaeusch, Mario Zeller
  • Patent number: 11226386
    Abstract: In a method for improved recording of scan data of an examination object by means of a magnetic resonance system with the aid of a simultaneous multi-slice (SMS) method, a minimum repetition time TR is determined dependent upon a quality criterion. The quality criterion herein extends the scan time, which is actually greatly shortened by the use of an SMS method, for the MR signals of the slice stack to be recorded, to the minimum repetition time TR. The “time reserve” thereby obtained (the difference of the determined minimum repetition time TR from the scan time needed for the slice stack to be recorded purely by means of the SMS method) is utilized to take account of further slices in the recording of the MR signals. By this means, firstly, further information can be obtained and, secondly, the image quality of the image data obtained is improved.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: January 18, 2022
    Assignee: Siemens Healthcare GmbH
    Inventor: Mario Zeller
  • Patent number: 11221384
    Abstract: The present disclosure provides a method for producing a radio frequency (RF) pulse for use in magnetic resonance. The steps of the method include providing a computer system and a set of RF input parameters. The computer system then generates an optimal phase surface by iteratively updating an initial RF pulse profile based at least in part on the set of RF input parameters. The optimal phase surface contains a set of iteratively generated RF pulse profiles with various characteristics, such as bandwidths or selectivity. The steps of the method further include selecting an RF pulse profile with the computer system based on a search on the optimal phase surface, which can be implemented with the help of an index file. The search can be performed using an artificial intelligence algorithm, and can retrieve the shortest pulse profile that satisfies user input parameters or requirements.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: January 11, 2022
    Assignee: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Gianluigi Veglia, Manu Veliparambil Subrahmanian
  • Patent number: 11204409
    Abstract: Systems and methods for reconstructing a motion-compensated magnetic resonance image are presented. In certain implementations, a computer-implemented method is provided. The method may include a plurality of operations, including receiving a set of k-space data from a magnetic resonance imaging device, dividing the set of k-space data into a plurality of groups, performing a plurality of initialization operations, performing a first iterative process until a first criteria for the first iterative process is achieved for a current scale of motion estimation, performing a second iterative process until a second criteria for the second iterative process is achieved, and outputting a motion-compensated magnetic resonance image reconstructed in accordance with a predetermined scale of motion estimation.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: December 21, 2021
    Assignee: University of Virginia Patent Foundation
    Inventors: Luonan Wang, Daniel Stuart Weller, John P. Mugler, III, Craig H. Meyer
  • Patent number: 11187768
    Abstract: The present invention relate to a system and associate method of MRI and MR spectroscopy which provide stable measurements of the relaxation times, T1 and T2, by using tailored multi-band RF pulses that direct control of the saturation conditions in the background pool of macro-molecular protons, and hence provide a flexible means to induce constant Magnetisation Transfer (MT) effects. In doing this, equal saturation of the background pool is obtained for all measurements independent of the parameters that may be changed, for example, the rotation rate used to obtain a desired flip angle, that is, the degree of change in the magnetisation of the free pool of protons.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: November 30, 2021
    Assignee: King's College London
    Inventors: Rui Pedro Azeredo Gomes Teixeira, Joseph Vilmos Hajnal, Shaihan Jalal Malik, Daniel John West
  • Patent number: 11181596
    Abstract: A storage medium, a magnetic resonance apparatus, and a method for obtaining an operating parameter of a magnetic resonance apparatus are disclosed herein. The method includes generating of at least one echo train, wherein the generation of an echo train includes: setting a given set of parameters; applying at least one radio frequency excitation pulse; and applying a dephasing gradient in readout direction; and reading out the echo train having at least two echo signals, wherein a readout gradient is applied while reading out the echo signals. The method further includes acquiring at least two echo signals, wherein the set of parameters differs in at least one parameter being used for different echo signals; processing the echo signals line by line to projections; and obtaining the operating parameter using the projections.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: November 23, 2021
    Assignee: Siemens Healthcare GmbH
    Inventor: Mario Zeller
  • Patent number: 11175366
    Abstract: A method for acquiring magnetic resonance imaging data with respiratory motion compensation using one or more motion signals includes acquiring a plurality of gradient-delay-corrected radial readout views of a subject using a free-breathing multi-echo pulse sequence, and sampling a plurality of data points of the gradient-delay-corrected radial readout views to yield a self-gating signal. The self-gating signal is used to determine a plurality of respiratory motion states corresponding to the plurality of gradient-delay-corrected radial readout views. The respiratory motion states are used to correct respiratory motion bias in the gradient-delay-corrected radial readout views, thereby yielding gradient-delay-corrected and motion-compensated multi-echo data. One or more images are reconstructed using the gradient-delay-corrected and motion-compensated multi-echo data.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: November 16, 2021
    Assignees: Siemens Healthcare GmbH, The Regents of the University of California
    Inventors: Xiaodong Zhong, Holden H. Wu, Vibhas S. Deshpande, Tess Armstrong, Li Pan, Marcel Dominik Nickel, Stephan Kannengiesser
  • Patent number: 11156681
    Abstract: A rotational force is applied to a sample tube by blowing of a drive gas to the sample tube. A spinning frequency of the sample tube is sequentially detected as a detection value. Acceleration control to gradually increase a pressure of the drive gas is executed until the detection value reaches a target value. In a process of the acceleration control, abnormality is determined based on a change with respect to time (difference: ?F) of the detection value. The determination is executed in a section of interest including a resonance frequency.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: October 26, 2021
    Assignee: JEOL Ltd.
    Inventors: Yuki Endo, Masahide Nishiyama
  • Patent number: 11136884
    Abstract: Apparatus and methods pertaining to a processing system operable to determine a change to an operation of a well construction system based on an indication of a quality of transmitted communication between downhole equipment of the well construction system in a wellbore and surface communication equipment of the well construction system transmitted during the operation, a projected effect of the operation on future communication between the downhole equipment and the surface communication equipment, downhole data related to one or more conditions in the wellbore, or a combination thereof. The processing system is operable to cause the change to the operation of the well construction system to be implemented.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: October 5, 2021
    Assignee: Schlumberger Technology Corporation
    Inventors: Shunfeng Zheng, Benjamin Peter Jeffryes, Mochammad Faisal Wingky