Patents Examined by Frederick Wenderoth
  • Patent number: 11609293
    Abstract: The data acquisition device may include a fat-suppression pulse exertion module configured to exert a fat-suppression pulse on an imaging area at set intervals, the fat-suppression pulse being able to suppress an initial fat signal to a negative value and keep the fat signal corresponding to the intermediate echo datum of the echo data collected between two fat-suppression pulses within [0, a], and a being a preset threshold close to 0, and an excitation and acquisition module, configured to exert a radio frequency pulse train and a series of phase encoding gradients after each fat-suppression pulse, collect the corresponding echo data, and fill the echo data into K-space in linear filling mode.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: March 21, 2023
    Assignee: Siemens Healthcare GmbH
    Inventor: Qiong Zhang
  • Patent number: 11609530
    Abstract: According to a first aspect of the present invention, there is provided a toner cartridge detachably mountable to a receiving device, the toner cartridge comprising a container including a accommodating portion for accommodating the toner and a discharge opening for discharging the toner from the accommodating portion into the receiving device; and an open/close member including a closing portion for closing the discharge opening and an engaging portion movable relative to the closing portion, the open/close member being rotatable relative to the container between (a) an opening position for causing the closing portion to open the discharge opening and (b) a closing position for causing the closing portion to close the discharge opening, wherein the engaging portion is movable relative to the closing portion between (c) a engaging position for engagement with the receiving device to receive a force for moving the open/close member from the opening position to the closing position when the toner cartridge is d
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: March 21, 2023
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yosuke Kashiide, Takashi Kimura
  • Patent number: 11604240
    Abstract: In a method for recording measurement data, frequency-dependent parameters characterizing a gradient unit are loaded, a k-space trajectory planned for a MR measurement and having at least one frequency component is loaded, MR measurement data is acquired based on the planned k-space trajectory and reconstructing image data from the MR measurement data, wherein the planned k-space trajectory is corrected based on the at least one frequency component of the planned k-space trajectory and the frequency-dependent parameters, and an electronic signal representing the reconstructed image data is provided as an output of the MR system. The reconstructed image data may be stored and/or displayed. Advantageously, the correction can be employed flexibly for k-space trajectories with different frequency components.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: March 14, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Adam Kettinger, Dominik Paul, Mario Zeller
  • Patent number: 11598834
    Abstract: In one embodiment, a magnetic resonance imaging apparatus includes: a scanner that includes a static magnetic field magnet configured to generate a static magnetic field, a gradient coil configured to generate a gradient magnetic field, and a WB (Whole Body) coil configured to apply an RF pulse to an object; and processing circuitry. The processing circuitry is configured to: set (i) a pulse sequence in which a sequence element is repeated, the sequence element including at least an inversion pulse and (ii) a data acquisition sequence executed after a delay time from the inversion pulse; and cause the scanner to execute the pulse sequence by using virtual gating.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: March 7, 2023
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Mitsue Miyazaki, Yoshimori Kassai
  • Patent number: 11592506
    Abstract: The present disclosure provides a system and method for magnetic resonance imaging. The method may include obtaining first k-space data collected from a subject in a non-Cartesian sampling manner. The method may also include generating second k-space data by regridding the first k-space data. The method may further include generating third k-space data by calibrating the second k-space data, wherein a calibrated field of view (FOV) corresponding to the third k-space data is constituted by a central portion of an intermediate FOV corresponding to the second k-space data. The method may still further include reconstructing, using at least one of a compressed sensing algorithm or a parallel imaging algorithm, a magnetic resonance (MR) image of the subject based at least in part on the third k-space data.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: February 28, 2023
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Yu Ding, Jingyuan Lyu, Qi Liu, Jian Xu
  • Patent number: 11579229
    Abstract: There are provided a parallel rapid imaging method and device based on a complex number conjugate symmetry of multi-channel coil data and nonlinear GRAPPA image reconstruction, and a medium. The imaging method includes: obtaining virtual conjugate coil data by expanding the actual multi-channel coil data; combining actual multi-channel coil data and virtual multi-channel coil data to obtain a linear data term and a nonlinear data term; calibrating weighting factors of the linear data term and the nonlinear data term by using combined low-frequency full-sampling data (margins of the low-frequency full-sampling data includes parts of high-frequency data); reconstructing data which is under-sampled in a high-frequency region according to the calibrated weighting factors; fusing the low-frequency full-sampling data and the reconstructed data for the high-frequency region.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: February 14, 2023
    Assignee: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY
    Inventors: Haifeng Wang, Dong Liang, Sen Jia, Xin Liu, Hairong Zheng
  • Patent number: 11579543
    Abstract: A developer cartridge may include: a first gear having a small-diameter gear portion and a large-diameter gear portion; and a second gear including: a first columnar portion centered on a second axis; a second columnar portion having a smaller diameter than the first columnar portion; a first engagement portion extending along a portion of a peripheral surface of the first columnar portion and engageable with the small-diameter gear portion; a second engagement portion extending along a portion of a peripheral surface of the second columnar portion and positioned closer to a housing than the first engagement portion in an axial direction and engageable with the large-diameter gear portion; and a protruding portion protruding in the axial direction and rotatable together with the first engagement portion and the second engagement portion. The second engagement portion may engage the large-diameter gear portion after the first engagement portion engages the small-diameter gear portion.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: February 14, 2023
    Assignee: BROTHER KOGYO KABUSHIKI KAISHA
    Inventors: Keita Shimizu, Takashi Shimizu, Hideshi Nishiyama, Naoya Kamimura, Tomonori Watanabe
  • Patent number: 11579219
    Abstract: A method and apparatus for determining spatial distribution of a complex radio frequency (RF) of both transmit field and receive sensitivity a magnetic resonance imaging (MRI) system. The method includes estimation of the absolute phase of transmit field using a reference transmit coil or array coils with minimal absolute phase. The method and apparatus include estimation of complex receive sensitivity of a transceiver coil using the complex transmit field of the transceiver coil or array coils.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: February 14, 2023
    Assignee: University of Cincinnati
    Inventor: Jinghua Wang
  • Patent number: 11573283
    Abstract: Provided is a method for generating MRI data including applying, by an MRI computing device, an RF excitation pulse, and completing, by the MRI computing device, a K-space by acquiring a plurality of phase encoding line groups, in a state in which any other RF excitation pulse is not applied after applying the RF excitation pulse, in which each of the plurality of phase encoding line groups includes a plurality of phase encoding lines, and an absolute value of an average phase encoding size of a phase encoding line group acquired earlier is not greater than an absolute value of an average phase encoding size of a phase encoding line group acquired later, among the plurality of phase encoding line groups.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: February 7, 2023
    Assignee: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sung-Hong Park, Hyun-Soo Lee
  • Patent number: 11573282
    Abstract: Techniques for compensating magnetic resonance imaging (MRI) data for artefacts caused by motion of a subject being imaged. The techniques include obtaining spatial frequency data obtained by using a magnetic resonance imaging (MRI) system to perform MRI on a patient, the spatial frequency data including first spatial frequency data and second spatial frequency data; determining a transformation using a first image obtained using the first spatial frequency data and a second image obtained using the second spatial frequency data; determining a residual spatial phase; correcting, using the transformation, second spatial frequency data and the residual spatial phase, to obtain corrected second spatial frequency data and a corrected residual spatial phase; and generating a magnetic resonance (MR) image using the corrected second spatial frequency data and the corrected residual spatial phase.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: February 7, 2023
    Assignee: Hyperfine Operations, Inc.
    Inventor: Carole Lazarus
  • Patent number: 11574728
    Abstract: The present disclosure relates to a medical imaging method for enabling magnetic resonance imaging of a subject (318) using a set of imaging parameters of imaging protocols, the method comprising: receiving information related to the subject; using a predefined machine learning model for suggesting at least one imaging protocol for the received information, wherein the imaging protocol comprises at least part of the set of imaging parameters and associated values; providing the imaging protocol.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: February 7, 2023
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Erik Amthor, Liqin Wang, Chenguang Zhao, Joachim Dieter Schmidt, Jorn Borgert, Yajing Zhang, Ingmar Graesslin, Tanja Nordhoff
  • Patent number: 11567156
    Abstract: A method for magnetic resonance imaging (MRI) is provided. The method may include obtaining scan data of a subject. The scan data may be acquired by an MR scanner at a time according to a pulse sequence. The method may include obtaining motion data of the subject. The motion data of the subject may be acquired by one or more sensors at the time. The motion data may reflect a motion state of the subject at the time. The method may also include determining, based on the motion data of the subject, a processing strategy indicating whether using the scan data to fill one or more k-space lines corresponding to the pulse sequence in a k-space. The method may further include obtaining k-space data based on the processing strategy.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: January 31, 2023
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Lingzhi Hu, Yiran Li, Xinyuan Xia
  • Patent number: 11567157
    Abstract: A method is provided for calibration of a magnetic resonance device with a transmitting device for generating an excitation field. In a first acquisition phase, a first transmitting coil element is detuned, at least one second transmitting coil element is tuned, and an MR data set is acquired using the transmitting device. In a second acquisition phase, the first transmitting coil element, the at least one second transmitting coil element are tuned, and at least one further MR data set is acquired using the transmitting device. By an arithmetic unit, a calibration factor is determined based on the MR data set and the at least one further MR data set for calculating a total voltage value at a feeding point of the first transmitting coil element from voltage values, which may be measured at a measuring point of an electrical supply line of the first transmitting coil element.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: January 31, 2023
    Assignee: Siemens Healthcare GmbH
    Inventor: Rene Gumbrecht
  • Patent number: 11543482
    Abstract: The invention relates to a method of MR imaging of an object (10). It is an object of the invention to enable MR imaging in the presence of motion of the imaged object, wherein full use is made of the acquired MR signal and a high-quality MR image essentially free from motion artefacts is obtained. The method of the invention comprises the steps of: generating MR signals by subjecting the object (10) to an imaging sequence comprising RF pulses and switched magnetic field gradients; acquiring the MR signals as signal data over a given period of time (T); subdividing the period of time into a number of successive time segments (SO, S1, S2, . . . Sn); deriving a geometric transformation (DVF1, DVF2, . . . DVFn) in image space for each pair of consecutive time segments (S0, S1, S2, . . . Sn), which geometric transformation (DVF1, DVF2, . . .
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: January 3, 2023
    Assignee: Koninklijke Philips N.V.
    Inventors: Tim Nielsen, Jan Hendrik Wuelbern
  • Patent number: 11536790
    Abstract: According to one embodiment, a medical information processing apparatus includes processing circuitry configured to derive an index value with respect to noise included in data associated with magnetic resonance signals collected by each of a plurality of reception coils, adjust a degree to which noise is removed from the data associated with the magnetic resonance signals based on the derived index value, remove noise from the data associated with the magnetic resonance signals based on the adjusted degree, and perform compositing of the data associated with the magnetic resonance signals from which noise has been removed.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: December 27, 2022
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Yuichi Yamashita, Kazuto Nakabayashi, Hitoshi Kanazawa, Kazuya Okamoto, Hiroshi Takai, Nobuyuki Konuma, Kensuke Shinoda
  • Patent number: 11536786
    Abstract: Systems and methods for data transmission may be provided. The system may at least include a data transmission module. The system may obtain MR signals from one or more RF coils. The system may generate, via a first portion of the data transmitting module, first data based on the MR signals. The system may generate, via a second portion of the data transmitting module, second data based on the first data. The second portion of the data transmitting module may connect to the first portion of the data transmitting module wirelessly. The system may further store the second data in a non-transitory computer-readable storage medium.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: December 27, 2022
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventor: Ling Ji
  • Patent number: 11523767
    Abstract: Described are a system, method, and computer program product for detecting neurodegeneration using differential tractography and treating neurological disorders accordingly. The method includes obtaining a first diffusion magnetic resonance imaging (MRI) scan of the brain of the patient and obtaining a plurality of diffusion MRI scans of a group of other brains. The method also includes generating a control diffusion MRI scan based on the plurality of diffusion MRI scans of the group of other brains. The method further includes determining a first anisotropy of first neural tracks of the first diffusion MRI scan and a second anisotropy of second neural tracks of the control diffusion MRI scan. The method further includes determining a differential by comparing the first anisotropy to the second anisotropy and identifying at least one neurological disorder based on the differential and a location of the first neural tracks in the brain of the patient.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: December 13, 2022
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Fang-Cheng Yeh, Robert Max Friedlander
  • Patent number: 11519988
    Abstract: The disclosure relates to techniques for adjusting at least one measurement parameter for a measurement protocol for a magnetic resonance examination. The techniques include providing at least one item of parameter information for adjusting a value of the at least one measurement parameter, wherein the at least one item of parameter information is provided independently of coil information for the magnetic resonance examination, and selecting a value of the at least one measurement parameter. The techniques further include transmitting the selected value to a protocol adjusting unit connected to the scanner unit of the magnetic resonance apparatus, providing coil information of the scanner unit, and automatically adjusting the value of the at least one measurement parameter based on the coil information provided.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: December 6, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Stefan Meyer, Manuela Rick
  • Patent number: 11506739
    Abstract: Methods and systems are provided for determining scan settings for a localizer scan based on a magnetic resonance (MR) calibration image. In one example, a method for magnetic resonance imaging (MRI) includes acquiring an MR calibration image of an imaging subject, mapping, by a trained deep neural network, the MR calibration image to a corresponding anatomical region of interest (ROI) attribute map for an anatomical ROI of the imaging subject, adjusting one or more localizer scan parameters based on the anatomical ROI attribute map, and acquiring one or more localizer images of the anatomical ROI according to the one or more localizer scan parameters.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: November 22, 2022
    Assignee: GE Precision Healthcare LLC
    Inventors: Dawei Gui, Dattesh Dayanand Shanbhag, Chitresh Bhushan, André de Almeida Maximo
  • Patent number: 11504022
    Abstract: A trolley system configured to transport a patient within an MRI environment includes a patient support portion, a base portion configured for movement relative to a floor, a lift coupled to the patient support portion and the base portion, an electric motor coupled to the lift, and an electric blower coupled to the patient transfer device. The lift is configured to change the elevation of the patient support portion relative to the base portion. The motor is mounted such that the elevation of the motor is fixed relative to base portion. The trolley system is positionable adjacent an MRI apparatus within the MRI environment and the magnetic field of the MRI does not interfere with the operation of the motor or blower. The trolley system may further include a patient transfer device having an air bearing. The blower is configured to deliver air to the air bearing.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: November 22, 2022
    Assignee: Qfix Systems, LLC
    Inventors: Daniel Coppens, James Manning, Franklin Ports, Jr.