Patents Examined by Gail R Gabel
  • Patent number: 8828738
    Abstract: The invention is directed to methods and devices for reducing interference from heterophile antibodies in an analyte immunoassay. In one embodiment, the invention is to a method comprising the steps of (a) amending a biological sample such as a whole blood sample with non-human IgM or fragments thereof by dissolving into said sample a dry reagent to yield a non-human IgM concentration of at least about 20 ?g/mL or equivalent fragment concentration; and (b) performing an electrochemical immunoassay on the amended sample to determine the concentration of said analyte in said sample. Preferably, the sample is amended with IgG or fragments thereof in addition to the IgM of fragments thereof.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: September 9, 2014
    Assignee: Abbott Point of Care Inc.
    Inventors: John Lewis Emerson Campbell, John Emegbero Omakor
  • Patent number: 8829160
    Abstract: An isolated antibody that has a specific binding affinity to a polypeptide comprising the amino acid sequence HTEGKP (SEQ ID NO: 2) phosphorylated at threonine is provided. The antibody may be used as biomarker for mitotic cells. A method for using the antibody in accordance with the invention comprises contacting a cell with the antibody and detecting antibody bound to the cell as an indicator of the cell being in the mitotic state. A reagent kit comprising the antibody is also provided.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: September 9, 2014
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Myra Hurt, Raed Rizkallah
  • Patent number: 8828671
    Abstract: Whole cell, simultaneous target and drug-target assay using differentially labeled antibodies and flow cytometry. First antibody binds to total target and second antibody binds to the drug binding site of the target, thus drug binding will competitively inhibit the second antibody allowing for a competitive inhibition assay of drug-target binding. The assay allows for whole cell analysis and even analysis of mixed populations of cells, yet provides detailed kinetic assessment of drug activity.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: September 9, 2014
    Assignee: Laboratory Corporation of America Holdings
    Inventors: Norman B. Purvis, Gregory T. Stelzer
  • Patent number: 8822168
    Abstract: The present invention includes assays and kits for detecting the assembly of an RNA binding protein-RNA complex and for detecting the activity of an RNA binding protein.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: September 2, 2014
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Gideon Dreyfuss, Lili Wan, Elizabeth Ottinger
  • Patent number: 8815527
    Abstract: The invention provides methods and compositions for simultaneously detecting the activation state of a plurality of proteins in single cells using flow cytometry. The invention further provides methods and compositions of screening for bioactive agents capable of coordinately modulating the activity of a plurality of proteins in single cells. The methods and compositions can be used to determine the protein activation profile of a cell for predicting or diagnosing a disease state, and for monitoring treatment of a disease state.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: August 26, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Omar D. Perez, Garry P. Nolan
  • Patent number: 8796040
    Abstract: A system of quantitatively determining a biomolecule, which has: allowing fluorescent silica particles capable of emitting fluorescence detectable by a flow cytometer to capture a target biomolecule fluorescent-labelled for quantitative determination; detecting the fluorescence emitted from the fluorescent silica particles themselves by using the flow cytometer; and measuring the intensity of the fluorescence of the labelled target biomolecule, thereby quantitatively determining the target biomolecule.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: August 5, 2014
    Assignees: The Furukawa Electric Co., Ltd., The University of Tokushima
    Inventors: Hideki Aizawa, Michio Ohkubo, Michihiro Nakamura, Hirokazu Miyoshi
  • Patent number: 8778699
    Abstract: A method for determining the amount of NT-proBNP in blood samples from animals. The method includes detecting degradation products of NT-proBNP by various methods, including using antibodies, kits and device.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: July 15, 2014
    Assignee: Idexx Laboratories, Inc.
    Inventors: Mahalakshmi Yerramilli, Michael Atkinson, Murthy V. S. N. Yerramilli
  • Patent number: 8771971
    Abstract: The present invention provides simple and rapid methods for measuring the function of a desired subset of lymphocytes, for example, T cells, B cells or NK cells. In addition, the present invention provides an all-in-one kit that contains reagents which permit a rapid and reliable analysis of the functions of T cells, B cells and NK cells obtained directly from whole blood or cord blood.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: July 8, 2014
    Assignee: The Research Foundation of State University of New York
    Inventor: Allen J. Norin
  • Patent number: 8765476
    Abstract: Automated sample processing systems may include onboard efficient high-speed mixing of at least two components with an automatic vertical force fluidic turbulent component mixer of which a mixed component may be aspirated and high-speed dispensed in a mixing vial. Other aspects may include single sweep applying a multi-treatment cleaning cycle to at least one slide. A multi-treatment cleaning cycle may include a washing treatment and a drying treatment. In yet other aspects the present invention may include an automated recovery sample processing system with the capability of detecting at least one immediate condition of a fortuitously terminated automatic sample processing run and perhaps even an automatic terminated sample processing run reconstruction calculator.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: July 1, 2014
    Assignee: Biocare Medical, LLC
    Inventors: Saradha Avantsa, Ravishankar Melkote, Thomas Maxwell, Geoffrey Cook
  • Patent number: 8765391
    Abstract: A method and kit for assaying a cell sample for the presence of at least a threshold number of cells of a given type are disclosed. The kit includes an assay device having a sample chamber for receiving the cell sample and an elongate collection chamber containing a selected-density and/or viscosity medium and having along its length, a plurality of cell-collection regions, and particles which are capable of specific attachment to cells of the selected cell type, and which are effective, when attached to the cells, to increase the density or magnetic susceptibility of the cells. In operation, particle-bound cells and particles in the cell sample are drawn through the elongate collection chamber under the influence of a gravitational or selected centrifugal or magnetic-field force until the particle-bound cells and particles completely fill successive cell-collection regions in the collection chamber.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: July 1, 2014
    Assignee: Zyomyx, Inc.
    Inventors: Frank Zaugg, Renee Tobias, Silvia McManus-Munoz, Peter Kernen, Laurence Ruiz-Taylor, Peter Wagner
  • Patent number: 8765392
    Abstract: The present invention relates to methods and kits for diagnosing, ascertaining the clinical course of myelodysplastic syndrome (MDS) and ascertaining response to a therapy regimen of myelodysplastic syndrome. Specifically the invention provides methods and kits useful in the diagnosis and determination of clinical parameters associated with MDS based on surface markers unique to MDS.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: July 1, 2014
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Jonni Moore, Sundhu Cherian, Adam Bagg
  • Patent number: 8759018
    Abstract: A method for determining an appropriate treatment option for a patient who has been diagnosed with disseminated intravascular coagulation (DIC) but who may have thrombotic thrombocytopenic purpura (TTP), by analyzing the amount and/or enzyme activity of a von Willebrand factor (vWF)-cleaving protease (ADAMTS13) and the amount of vWF in a patient that has been diagnosed with DIC is disclosed. Using the method of the present invention, a differential diagnosis of patients with thrombotic thrombocytopenic purpura (TTP) can be made from among patients diagnosed with DIC, which could not previously be distinguished on the basis of only clinical findings or known markers. Also disclosed is a kit for determining an appropriate treatment option, the kit comprising an antibody or a fragment thereof which specifically binds to ADAMTS13.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: June 24, 2014
    Assignees: Mitsubishi Chemical Medience Corporation, Juridical Foundation the Chemo-Sero-Therapeutic Research Institute
    Inventors: Tomoko Ono, Shinichiro Watanabe, Fumio Furusaki, Ko Igami
  • Patent number: 8748159
    Abstract: A rapid method for the quantitation of various live cell types is described. This new cell fluorescence method correlates with other methods of enumerating cells such as the standard plate count, the methylene blue method and the slide viability technique. The method is particularly useful in several applications such as: a) quantitating bacteria in milk, yogurt, cheese, meat and other foods, b) quantitating yeast cells in brewing, fermentation and bread making, c) quantitating mammalian cells in research, food and clinical settings. The method is especially useful when both total and viable cell counts are required such as in the brewing industry. The method can also be employed to determine the metabolic activity of cells in a sample. The apparatus, device, and/or system used for cell quantitation is also disclosed.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: June 10, 2014
    Assignee: GenPrime, Inc.
    Inventors: James E. Fleming, Jason Buck Somes, Darby McLean, Jerad R. Holcomb
  • Patent number: 8741662
    Abstract: Methods and kits for diagnosis and prognosis using biomarkers comprising albumin-bound protein/peptide complex (ABPPC).
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: June 3, 2014
    Assignee: The Johns Hopkin University
    Inventors: Jennifer E. Van Eyk, Rebekah Lynn Gundry, Robert J. Cotter
  • Patent number: 8722419
    Abstract: Mass cytometry method. In one aspect, the method includes providing a sample having at least one cell type and mixing the sample with material such as nanoparticles functionalized with affinity molecules for the at least one cell type. The sample is transported through a suspended microchannel resonator to record a mass histogram and a cell count for the at least one cell type is determined from the histogram.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: May 13, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Scott R. Manalis, Thomas P. Burg, Michel Godin, Kenneth Babcock
  • Patent number: 8715951
    Abstract: Disclosed are antibodies that selectively bind to blood coagulation factor FVIII, and highly sensitive immunological assays comprising these antibodies. Preferred assays can detect FVIII at about 3500-fold below the normal physiological levels, and have a wide array of applications including accurate monitoring of FVIII concentration in pharmaceutical products for treatment of blood coagulation disorders, and determination of FVIII levels in plasma of human patients, including those with blood coagulation disorders such as hemophilia.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: May 6, 2014
    Assignee: The University of Vermont and State Agriculture College
    Inventors: Behnaz Parhami-Seren, Kenneth G. Mann, David N. Fass
  • Patent number: 8716453
    Abstract: Proteins respectively having the amino acid sequences represented by SEQ ID NOs: 1, 17 and 32; structural genes respectively encoding the proteins, preferably respectively having the nucleotide sequences represented by SEQ ID NOs: 2, 18 and 33; an antibody capable of specifically binding to feline-derived cystatin C, feline-derived ?2 microglobulin or feline-derived ?1 microglobulin; a kit for diagnosing feline nephropathy, containing the antibody of the present invention; and a method for diagnosing feline nephropathy using the antibody of the present invention.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: May 6, 2014
    Assignees: School Juridical Person Kitasato Institute, Nipro Corporation
    Inventor: Fumio Hoshi
  • Patent number: 8709736
    Abstract: The present invention relates to the use of TFF3 in the diagnosis and detection of Barrett's esophagus using non-invasive, non-endoscopic methods.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: April 29, 2014
    Assignee: Medical Research Council
    Inventors: Pierre Lao-Sirieix, Rebecca C. Fitzgerald
  • Patent number: 8703494
    Abstract: Described herein are systems and methods for assaying a sample to quantitatively determine the percentage of glycated hemoglobin in the sample.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: April 22, 2014
    Assignee: Relia Diagnostic Systems, LLC
    Inventors: William J. Rutter, Jang H. Han, Taewoo Kwon
  • Patent number: 8691591
    Abstract: Disclosed herein are compositions and methods for combining the output obtained from redundant sensor elements in a sensor array.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: April 8, 2014
    Assignee: Trustees of Tufts College
    Inventors: David R. Walt, Todd A. Dickinson