Patents Examined by Gail Verbitsky
  • Patent number: 8636406
    Abstract: An apparatus determines cooling characteristics of an operational cooling device used for transferring heat from an electronic device. The operational cooling device is thermally coupled to a heat pipe. The heat pipe has an exposed surface for selective application of heat thereon. Heat from a localized heat source is selectively applied to at least one region of the exposed surface. The heat source is preferably capable of being varied both positionally relative to the exposed surface and in heat intensity. A heat shield is preferably positioned around the exposed surface of the heat pipe to isolate the operational cooling device from the heat from the localized heat source. A temperature detector repeatedly measures a temperature distribution across the exposed surface while the cooling device is in a heat transfer mode. The temperature distribution is then used to thermally characterize the operational cooling device.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, Madhusudan K. Iyengar, James A. Lacey, Roger R. Schmidt
  • Patent number: 8628240
    Abstract: Various embodiments provide systems and methods measuring the temperature of a device using a semiconductor temperature sensor, such as a diode. This invention allows the use of an uncalibrated diode to be used as a temperature sensor by applying a sinusoidally varying forcing current to the diode and measuring the rate of change of the voltage across the diode. Embodiments advantageously provide for a rapid, responsive temperature measuring, substantially eliminating the effect of lead resistance associated with the temperature sensor.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: January 14, 2014
    Assignee: Delta Design, Inc.
    Inventors: Jerry Ihor Tustaniwskyj, James Wittman Babcock
  • Patent number: 8628235
    Abstract: Thermal test apparatus comprising a specimen supported by a fixture, a thermal shroud comprising a flexible insulating fabric forming an enclosure around at least a portion of the specimen, and a temperature controlled air supply connected to an opening formed in the enclosure for delivering a supply of temperature controlled air into the enclosure. Also, a method of conducting a thermal test.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: January 14, 2014
    Assignee: Airbus Operations Limited
    Inventor: Peter Davies
  • Patent number: 8608375
    Abstract: A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: December 17, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Mark Rhodes
  • Patent number: 8608376
    Abstract: A method for modeling the performance of a laterally diffused metal oxide semiconductor (LDMOS) device across a wide temperature range is disclosed. The method comprises the steps of positioning the device in an environment chamber operable to create a plurality of environment temperatures; connecting the pins of the device to a measurement system operable to measure at least one device characteristic; operating the environment chamber to set a series of four environment temperatures, acquiring a value of the device characteristic from the measurement system at each temperature, and extracting a temperature parameter set based on the value of the device characteristic at each temperature, then generating a temperature-scaling model for the device.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 17, 2013
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Avinash S. Kashyap, H. Alan Mantooth
  • Patent number: 8602645
    Abstract: A temperature detection system includes a power semiconductor device, a chip temperature detection device for detecting a temperature of the power semiconductor device, loss-related characteristic value acquiring means for acquiring a loss-related characteristic value that is a characteristic to decide a loss of the power semiconductor device, difference value calculating means for calculating, from the loss-related characteristic value, a difference value between the temperature of the power semiconductor device and a temperature detected by the chip temperature detection device, a corrected temperature signal generating part for generating a corrected temperature signal by adding the temperature detected by the chip temperature detection device and the difference value, and an output part for outputting the corrected temperature signal to the outside.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: December 10, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Noboru Miyamoto, Akira Yamamoto
  • Patent number: 8602640
    Abstract: A sensing system is configured to detect physical parameters of a fluid sample. In particular, the sensing system is configured to detect the dew point of the fluid by reducing temperature of a sensing medium and detecting the fluid condensate on a sensing surface by directing light from a light source to the sensing surface and detecting the light reflected off the sensing surface onto a light detector. The light source and the light detector are on the opposite side of the sensing medium from the sensing surface.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: December 10, 2013
    Assignee: Entegris—Jetalon Solutions, Inc.
    Inventors: Ronald P. Chiarello, Christopher Andrew Wacinski, Charles Eric Boyd, Stewart Robin Shearer
  • Patent number: 8591105
    Abstract: The invention relates to an optical element for guiding and forming a laser beam, and to a method for recording beam parameters, particularly in a laser system, comprising a carrier substrate (40) and a coating (39), which is applied to at least one side of the carrier substrate (40), and comprising at least one temperature sensor (38). The temperature sensor (38) is comprised of a number of pixels arranged in a matrix, and each respective pixel has at least one temperature-sensitive element (39). The at least one temperature-sensitive element (39) of the pixel is constructed inside the carrier substrate (40) made of silicon.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: November 26, 2013
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Jürgen-Michael Weick, Armin Horn, Gerhard Hammann, Peter Laitenberger, Nick Collier, Ross Peter Jones
  • Patent number: 8591104
    Abstract: A temperature sensor having a weld zone between an element electrode wire and a sheath core wire. When a section of the weld zone is taken orthogonally to the axial direction and in such a manner as to pass through a center point, L/D is greater or equal to 0.6, wherein D represents the diameter of the element electrode wire, and L represents the length of a chord connecting a first weld point and a second weld point as defined herein.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: November 26, 2013
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Tatsuya Suzuki, Go Hanzawa, Takeshi Morita, Akihiro Fukata, Ken Masuda
  • Patent number: 8585284
    Abstract: A temperature measurement apparatus includes a light source; a first splitter that splits a light beam into a measurement beam and a reference beam; a reference beam reflector that reflects the reference beam; an optical path length adjustor; a second splitter that splits the reflected reference beam into a first reflected reference beam and a second reflected reference beam; a first photodetector that measures an interference between the first reflected reference beam and a reflected measurement beam obtained by the measurement beam reflected from a target object; a second photodetector that measures an intensity of the second reflected reference beam; and a temperature calculation unit. The temperature calculation unit calculates a location of the interference by subtracting an output signal of the second photodetector from an output signal of the first photodetector, and calculates a temperature of the target object from the calculated location of the interference.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: November 19, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Jun Abe, Tatsuo Matsudo, Chishio Koshimizu
  • Patent number: 8579502
    Abstract: A method for optimizing direct wafer bond line width for reduction of parasitic capacitance in a MEMS device by reducing the width of a bond line between a first and a second wafer, exposing the MEMS device to a water vapor for a predetermined time period and at a first temperature capable of evaporating water, cooling the MEMS device at a second temperature capable of freezing the water, and operating the MEMS device at a third temperature capable of freezing the water to determine if there is discontinuity during operation.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: November 12, 2013
    Assignee: Northrop Grumman Corporation
    Inventors: Henry C. Abbink, Gabriel M. Kuhn, Howard Ge, Daryl Sakaida
  • Patent number: 8573840
    Abstract: The invention relates to an integrated temperature sensor (1) comprising: means (2000) for generating a pulse train (DATA_IN) at an oscillation frequency, means (3000) for counting the number of pulses during a fixed period of time independent of a temperature to be measured (T) and for generating a plurality of bits (b11, b10, . . . , b0) indicating the number of pulses in the pulse train (DATA_IN), and means (4000) for generating a serial digital signal (DATA_OUT) from said bits (b11, b10, . . . , b0), in which the means (2000) for generating a pulse train (DATA_IN) include a plurality of logic gates (2410, 2420, 2430, 2440, 2450) which can introduce a delay dependent on the temperature to be measured (T), said means (2000) generating a pulse train (DATA_IN) the oscillation frequency of which is dependent on said temperature to be measured (T). The invention also relates to a temperature measurement method and to a transponder for a wireless system.
    Type: Grant
    Filed: October 9, 2006
    Date of Patent: November 5, 2013
    Assignee: Incide, S.A.
    Inventors: Aritz Ubarretxena Belandia, Roc Berenguer—Pérez, César Matinez Antón, Daniel Egurrola López, Javier Hernández de Miguel
  • Patent number: 8573836
    Abstract: An apparatus evaluates a substrate mounting device adapted to hold a target substrate placed on a mounting surface and to control a temperature of the target substrate. The apparatus includes an evacuatable airtightly sealed chamber accommodating therein the substrate mounting device, a heat source, arranged in a facing relationship with the mounting surface, for irradiating infrared light. The apparatus further includes an evaluation-purpose substrate adapted to be mounted on the mounting surface in place of the target substrate, the evaluation-purpose substrate being made of an infrared light absorbing material, and having a unit for measuring temperatures at plural sites on a surface and/or inside of the substrate.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: November 5, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Yasuharu Sasaki, Takehiro Ueda, Taketoshi Okajo, Kaoru Oohashi
  • Patent number: 8573842
    Abstract: A sensor control circuit for controlling a sensor unit for measuring a physical value includes a timing controller which selects periodically one or more sensor units among multiple sensor units and converts an output signal from the sensor unit to a continuous serial input signal, an oscillator which receives the serial input signal input by the controller and outputs a frequency signal corresponding to the output signal detected by the sensor unit, a counter which counts for a predetermined duration a number of pulses of the frequency signal output from the oscillator, a data converter which converts the number of pulses to voltage data and outputs the data, and an RLC selector which inputs to the converter information indicating a characteristic value on which the number of pulses is based. The characteristic value is resistance, inductance or electrostatic capacitance. The sensor units measure physical values, respectively.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: November 5, 2013
    Assignee: Ibiden Co., Ltd.
    Inventors: Zhenhua Shao, Christopher Lee Keller, Masataka Ito, Dongdong Wang
  • Patent number: 8568025
    Abstract: A temperature probe for use in oil-filled transformers comprises an optical fiber, a temperature sensitive member, and a protective cylindrical sheath. The optical fiber and the sensitive member are located in the protective sheath, and continuous longitudinal slit is defined along the length of the sheath to allow oil to flow therein. The optical fiber is mounted in and to the sheath using a bonding material and at a distance from the sheath. The sensitive member is adhesively mounted to the optical fiber, within the sheath, and at a distance thereof.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: October 29, 2013
    Inventors: Jean-François Meilleur, Jean-Noël Bérubé, Michel Plourde
  • Patent number: 8568023
    Abstract: A measuring apparatus for an ear thermometer includes a battery, a mode switching circuit and a microcontroller, and the microcontroller, during a run mode or a normal operating state, does not pass battery current to the mode switching circuit in order that the insertion of the mode switching circuit causes no substantial change in power consumption so as to suppress a power consumption of the apparatus and extend the power of the battery.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: October 29, 2013
    Assignee: Bio Echo Net inc
    Inventor: Hideki Tanaka
  • Patent number: 8568027
    Abstract: The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: October 29, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Ilia N. Ivanov, David Bruce Geohegan
  • Patent number: 8562210
    Abstract: A system and a method for measuring temperature within an operating circuit use a Wheatstone bridge within a temperature sensing circuit. One of the resistors in the Wheatstone bridge is a thermally sensitive resistive material layer within the operating circuit. The other three resistors are thermally isolated from the operating circuit. Particular configurations of NFET and PFET devices are used to provide enhanced measurement sensitivity within the temperature sensing circuit that includes the Wheatstone bridge.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: October 22, 2013
    Assignee: International Business Machines Corporation
    Inventors: Cathryn J. Christiansen, John A. Fifield, Dimitris P. Ioannou, Tom C. Lee, Lilian Kamal
  • Patent number: 8562209
    Abstract: The invention discloses a method to control the work of electronic thermometer by using the position of probe. The probe incased in a disposable sheath, wherein the pre-heating mechanism in the probe and the control switch is connected with the host of the electronic thermometer by wires; and by using the axial reciprocating motion of the probe to trigger the control switch to initiate the electronic thermometer. When using the invention, we use the movement for the assembling of the sheath to initiate the hearting process and measurement, to ensure that the disposable sheath is assembled on the probe, and then execute the measurement, so as to eliminate the possibility of cross infection completely. The invention also exempts the requirement for the users to the return back of the probe into the cavity after use, and brings convenience for the users: Meanwhile, the equipment structure is simple, and the machinery assembles are few by comparison, which effectively decrease the production cost.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: October 22, 2013
    Assignee: Edan Instruments, Inc.
    Inventors: Zhidong Yu, Lingfeng Kong, Zhao Qin
  • Patent number: 8550706
    Abstract: There is provided a temperature measuring device capable of achieving cost reduction even in the case where the same is a multichannel temperature measuring device. The temperature-measuring device comprises a thermocouple having two dissimilar metal wires, ends thereof, on one-side, being joined with each other, and the other ends thereof, being connected to one pair of contact terminals, respectively, a unit of a temperature-measurement set made up by joining together a plurality of the thermocouples, and a reference junction compensation circuit provided for every unit of the temperature-measurement set, wherein at least one of the reference junction compensation circuits of the temperature-measuring device is left out while the other reference junction compensation circuits of the temperature-measuring device are removed upon a plurality of the units of the temperature-measurement sets being disposed in series.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: October 8, 2013
    Assignee: Yokogawa Electric Corporation
    Inventor: Koji Ota