Patents Examined by Gail Verbitsky
  • Patent number: 8393785
    Abstract: A nanocalorimeter includes a merging layer having, a drop placement area for holding drops to be merged and a thermal equilibration area. A measurement layer includes a substrate, and a temperature probe on the substrate, wherein the temperature probe extends out of the surface of the substrate to come into operative contact with the thermal equilibration area when the measurement layer is placed in operative association with the merging layer. The nanocalorimeter is configured to have the merging layer and the measurement layer non-integrated, making the measurement layer reusable.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: March 12, 2013
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Dirk De Bruyker, Francisco E. Torres, Michal V. Wolkin, Gregory B. Anderson, Eugene M. Chow
  • Patent number: 8393784
    Abstract: A method for identifying types of flaws in a composite object includes: a) rapidly heating the surface of the object; b) recording pixel intensities in a sequence of IR images; c) determining temperature-versus-time data for each of the pixels from the IR images; and d) determining what type of flaw if any corresponds to each of the pixels using the temperature-versus-time data determined in step (c). A contrast curve derived from the temperature-versus-time data may be used in determining what type of flaws if any corresponds to each of the pixels. The contrast curve may be determined by subtracting a synthetic reference curve from a temperature time curve from the temperature-versus-time data. The types of flaws may be determined from size and/or shapes of peaks in the contrast curves. Some flaws are delaminations, layers of porosity, and uniformly distributed porosity.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 12, 2013
    Assignee: General Electric Company
    Inventors: Harry Israel Ringermacher, Donald Robert Howard, Bryon Edward Knight, William George Patterson, Thomas Edward Bantel
  • Patent number: 8388223
    Abstract: A method for measuring the temperature at various locations in a furnace adapted to heat-treat a metal part commences by placing one or more devices at various location within the furnace. Each device is an inorganic/metallic skeletal structure residual from firing a mixture of binder and one or more of inorganic or metallic particles at a temperature that chars the binder to form the inorganic/metallic skeletal structure of a determined shape. A physical parameter of the skeletal structure determined shape is monitored after firing of the furnace. Then, the monitored physical parameter is compared to a plot of temperature versus the physical parameter to determine the temperature of the furnace at the various locations.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: March 5, 2013
    Assignee: The Edward Orton Jr. Ceramic Foundation
    Inventors: Gary Childress, James Litzinger, Thomas McInnerney
  • Patent number: 8382370
    Abstract: An improved thermocouple assembly for providing a temperature measurement is provided. The thermocouple assembly includes a sheath having a measuring tip, a support member received within the sheath, and first and second wires disposed within the support member. An end of each of the first and second wires are fused together to form a thermocouple junction therebetween. A recessed region is formed in a distal end of the support member, and the thermocouple junction is fixedly located at the base of the recessed region such that the recessed region maintains the thermocouple junction in a substantially fixed position relative to the measuring tip of the sheath.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: February 26, 2013
    Assignee: ASM America, Inc.
    Inventors: Ravinder K. Aggarwal, Robert C. Haro
  • Patent number: 8382367
    Abstract: A probe for an ear thermometer has a mounting bracket, a light module, a temperature sensor and a probe tube. The light module and temperature sensor is mounted on the mounting bracket. The light module is capable of radiating different colored lights to respectively indicate normal or abnormal body temperature. The probe tube covers the light module and temperature sensor and is light-pervious. Because the probe of the ear thermometer indicates the body temperature by different colored lights and/or numerals, using the ear thermometer with the probe is easy, simple and instinctive when compared to conventional thermometers that use LCD display to show numerical values.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: February 26, 2013
    Assignee: Digio2 International Co., Ltd.
    Inventor: Kun-Sung Chen
  • Patent number: 8371749
    Abstract: A temperature sensor includes a compare subject voltage output unit, a temperature range decision unit, and a temperature signal output unit. The compare subject voltage output unit is configured to output a reference voltage having a constant value irrespective of a change of an external temperature and a third temperature voltage that decreases in response to an increase of an external temperature. The temperature range decision unit is configured to compare the reference voltage and the third temperature voltage, and output an enable signal, to indicate whether the external temperature is different from a normal temperature. The temperature signal output unit is configured to output a specific one of a plurality of high temperature signals or a specific one of a plurality of low temperature signals, to indicate a range of the external temperature, in response to the enable signal.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: February 12, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Je-Il Ryu
  • Patent number: 8371746
    Abstract: A thermal analysis device comprising a replaceable sensor that can be contacted via a contact element of an electrical contacting means, a heating element and a cooling element. The contact element(s) is thermally connected with the heating element and can be heated essentially independently of the operating state of the cooling element even when no sensor is mounted to the device.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: February 12, 2013
    Assignee: Mettler-Toledo AG
    Inventors: Corinne Schärer, Ulrich Esser, Thomas Hütter
  • Patent number: 8366315
    Abstract: A system and method are disclosed for controlling a drywell including a receiver having upper and lower ends with the lower end being more insulated than the upper and having a temperature sensor in thermal contact therewith. Upper and lower heaters are in thermal contact with the upper and lower ends respectively. A controller includes an integrated circuit having a temperature sensor. A reading from the integrated circuit is used to control power to the upper heater and reduce a temperature gradient between the upper and lower ends of the receiver.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: February 5, 2013
    Assignee: Fluke Corporation
    Inventors: Allen Erik Sjogren, Eric Nerdrum
  • Patent number: 8360635
    Abstract: Embodiments of the present invention provide for a system and method for flow assurance and pipe condition monitoring in a pipeline for flowing hydrocarbons using at least one thermal sensor probe, which at least one thermal sensor probe may be used in conjunction with one or more other sensors to manage the sensing process and for data fusion to accurately determine flow properties and/or pipeline condition. By way of example, but not by way of limitation, in an embodiment of the present invention, a network of noninvasive sensors may provide output data that may be data-fused to determine properties of the pipeline and/or flow through the pipeline.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: January 29, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Songming Huang, Yan Kuhn de Chizelle
  • Patent number: 8356934
    Abstract: A surrogate temperature sensor (52) for a convection cooled radiant heater system is described. The surrogate temperature sensor has an internal controllable heater (62) and a sensing device such as a thermocouple (64). The surrogate temperature sensor is paired with a furnace/dryer radiant heat source (38). The surrogate's internal heater provides sufficient power to heat the surrogate to the same temperature as the radiant heater. At least one surrogate temperature sensor (52) is positioned to be exposed to the cooling media in a manner similar to the radiant heat source. The surrogate sensor reports its temperature which is indicative of the radiant heater temperature to the cooling controller. The controller responds to this signal and adjusts cooling to maintain the radiant heater at its desired temperature.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: January 22, 2013
    Inventor: Paul Allen Howard
  • Patent number: 8348500
    Abstract: A hygrometer and dew-point instrument is provided that is structurally simple while reducing the workload during maintenance. The hygrometer measures relative humidity of a measurement space, and has a main body that encapsulates a working fluid therein and causes a heat-pipe phenomenon. The main body is disposed across the measurement space and an external space spaced from the measurement space by a heat-insulating part and has a temperature lower than the measurement space. A first temperature deriving part derives the temperature of the main body in a section where the working fluid evaporates. A space temperature detecting unit detects the temperature of the measurement space. A computation unit calculate relative humidity of the measurement space based on the temperature of the main body derived by the first temperature deriving part and the temperature of the measurement space detected by the space temperature detecting unit.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: January 8, 2013
    Assignee: Espec Corp.
    Inventor: Shinichirou Sakami
  • Patent number: 8348501
    Abstract: A sensor for detecting icing conditions in an airstream includes a flow housing mounted on an aircraft and in which one or more probes are mounted. At least one of the probes subjected to impingement of the airstream and liquid moisture droplets in such airstream. The heat removal, or cooling effect on the probe in the airstream carrying liquid droplets is determined. A temperature signal indicating the airstream temperature is combined with signals from the at least one probe for determining whether or not icing conditions are present.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: January 8, 2013
    Assignee: Rosemount Aerospace, Inc.
    Inventor: John A. Severson
  • Patent number: 8348499
    Abstract: Various methods for testing spiral wound modules by thermal imaging are described. In a preferred embodiment, the method(s) includes flowing a gas between a scroll face and permeate collection tube of a spiral wound module and detecting temperature differences on the scroll face. Temperature differentials on the scroll face may be captured as a thermal image. The location(s) of temperature differentials on the scroll face can be correlated to defects in the module. In preferred embodiments, the subject test methods are non-destructive and can be applied to spiral wound modules in either a dry or wet condition.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: January 8, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Steven D. Jons, William A. Jons
  • Patent number: 8342741
    Abstract: A method is disclosed for operating a sensor arrangement having at least one measuring sensor and at least one reference sensor for recording the same physical variable, and having an analysis unit electrically connected thereto, with a characteristic of the sensor arrangement being recorded in an initialization phase from measured values of the at least one measuring sensor and of the at least one reference sensor, and an alarm being given during continuous operation if the deviation from the characteristic lies outside a tolerance band. It is proposed to suspend the alarm dynamically so long as the changes in the measured value in the variation over time of the at least one measuring sensor or in the variation over time of the at least one reference sensor differ by more than a definable limit within a definable time interval.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: January 1, 2013
    Assignee: ABB AG
    Inventors: Harald U. Mueller, Paul Szasz, Ralf Huck, Steffen Keller, Tilo Merlin
  • Patent number: 8342748
    Abstract: A method of making a probe for an electronic thermometer includes positioning a flex circuit together with a probe shaft. Connecting a locating member to the probe shaft. The locating member comprises a resilient locator that is resiliently deformed by engagement with the flex circuit thereby to bias the flex circuit to a selected position. The biasing of the flex circuit by the resilient locator is independent of movement of the probe shaft.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: January 1, 2013
    Assignee: Tyco Healthcare Group LP
    Inventor: Joseph T. Gierer
  • Patent number: 8342744
    Abstract: The differential scanning calorimeter includes: a heat sink, which stores a measuring sample and a reference material; a heater, which heats the heat sink; a cooling block, which is separated away from the heat sink, and positioned below the heat sink; a thermal resistor, which is connected between the heat sink and the cooling block, and forms a heat flow path therebetween; a cooling head, which is detachably fitted to the cooling block, and is cooled by an external cooling device; and differential heat flow detectors, which output a temperature difference between the measuring sample and the reference material as a heat-flow-difference signal, in which: the cooling block forms a side wall to fit the bore of the cooling head outward from the joint of the thermal resistance body; the top surface of the cooling head is lower than the joint.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: January 1, 2013
    Assignee: SII NanoTechnology Inc.
    Inventors: Shinya Nishimura, Kentaro Yamada, Hirohito Fujiwara
  • Patent number: 8337079
    Abstract: To provide a fluorescent temperature sensor capable of identifying easily the location of a failure. A fluorescent temperature sensor for producing a temperature signal from fluorescent light from a fluorescent material and that has been optically stimulated comprises a light projecting module having an LED for projecting light at the fluorescent material and a second photodiode for receiving light emitted from the LED and a light receiving module having a first photodiode for receiving the light emitted from the fluorescent material, where the location of a failure in the sensor can be identified based on, at least, the output signal from the second photodiode.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: December 25, 2012
    Assignee: Azbil Corporation
    Inventors: Seiichiro Kinugasa, Atsushi Kato, Shunji Ichida
  • Patent number: 8328420
    Abstract: Support structures for positioning sensors on a physiologic tunnel for measuring physical, chemical and biological parameters of the body and to produce an action according to the measured value of the parameters. A sensor fitted on the support structures uses a special geometry for acquiring continuous and undisturbed data on the physiology of the body. Signals are transmitted to a remote station by wireless transmission such as by electromagnetic waves, radio waves, infrared, sound and the like or by being reported locally by audio or visual transmission. The physical and chemical parameters include brain function, metabolic function, hydrodynamic function, hydration status, levels of chemical compounds in the blood, and the like. The support structure includes patches, clips, eyeglasses, head mounted gear and the like, containing passive or active sensors positioned at the end of the tunnel with sensing systems positioned on and accessing a physiologic tunnel.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: December 11, 2012
    Inventor: Marcio Marc Abreu
  • Patent number: 8322919
    Abstract: A fiber-optic temperature sensor with a cantilever beam including two different material strips with different thermal expansion coefficients, the cantilever beam having a reflective surface on an end of the cantilever beam, an optical fiber probe including a transmitting multimode optical fiber and at least one receiving multimode optical fiber for receiving reflected light from the reflective surface. Temperature changes at the sensor are indicated by a change in reflected light coupled into the receiving multimode optical fiber due to lateral displacement of the edge of the reflective surface caused by bending of the cantilever beam. Some embodiments have additional reference receiving fibers for compensation for noise, changes in gap length, and other factors.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: December 4, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Nicholas Lagakos, Joseph A Bucaro
  • Patent number: 8308353
    Abstract: An ear thermometer which includes a temperature detection element and infrared detection element arranged near the opening portion of a probe achieves a reduction in manufacturing cost while reducing the influence of thermal shock. This invention provides an ear thermometer incorporating, in a probe, a temperature detection element to detect an environmental temperature and an infrared detection element to detect infrared radiation emitted from a temperature measurement region in an earhole. The probe includes an end face portion having an opening in its distal end, an inner surface portion of a hollow cylindrical member, and an inwardly protruding engaging portion. A detection element housing is fixed to close the opening of the probe and to form an air layer between the detection element housing and the probe.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: November 13, 2012
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Keiji Yamaguchi