Patents Examined by Gary Jackson
  • Patent number: 11083414
    Abstract: A system for health condition monitoring includes a wearable device, a portable device and a server. The portable device is capable of communicating between the wearable device and the server. The system further includes a non-contact ECG acquisition module for capturing ECG signals from a user wearing the wearable device, a non-contact audio acquisition module for capturing a respiratory sound signal and a heart sound signal from the user wearing the wearable device, a first signal processing and analysis module for receiving and processing the ECG signals, the respiratory sound signal and the heart sound signal to perform QRS detection, HR calculation and ECG derived RR determination, and a second signal processing and analysis module for receiving and processing the ECG signals, the respiratory sound signal and the heart sound signal to perform heart sound localization, heart sound cancellation, respiratory sound restoration, and sound based RR determination.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: August 10, 2021
    Assignees: DELTA ELECTRONICS INT'L (SINGAPORE) PTE LTD, NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Zhiping Lin, Yongkiang Yeo, Jianmin Zhang, Wee Ser, Yenpo Tai
  • Patent number: 11076809
    Abstract: A static charge filter (522) removes static charge in a cardiac electrical signal. The static charge filter includes a first amplifier (608) configured to amplify an input signal, which includes the cardiac electrical signal and static charge from an electrode, which is in a path of an X-ray beam. The static charge filter further includes a limiter (614) configured to limit a maximum voltage of the signal based on a predetermined clamping threshold, producing a voltage clamped signal. The static charge filter further includes a filter (616) configured to filter high frequency components of the voltage clamped signal, producing a filtered signal. The static charge filter further includes a second amplifier (620) configured to scale an amplitude of the filtered signal so that cardiac electrical signal in an output signal has a same voltage level as a voltage level of the cardiac electrical signal in the input signal.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: August 3, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Marc Anthony Chappo, David Dennis Salk
  • Patent number: 11076756
    Abstract: A laser system that includes a laser source emitting a laser beam along an axis and a keratometer. The keratometer includes a first set of individual light sources that are equally spaced from one another along a first ring and that direct a first light toward an eye and a second set of individual light sources that are equally spaced from another along a second ring and direct a second light toward the eye, wherein the first ring and said second ring are co-planar and concentric with one another about the axis. The laser system includes a telecentric lens that receives the first light and second light reflected off of the eye and a detector that receives light from the telecentric lens and forms an image. The laser system also includes a processor that receives signals from said detector representative of the image and determines an astigmatism axis of the eye based on the signals.
    Type: Grant
    Filed: August 27, 2017
    Date of Patent: August 3, 2021
    Assignee: Lensar, Inc.
    Inventor: Rudolph W. Frey
  • Patent number: 11071871
    Abstract: An intracardiac system has an intracardiac pacemaker and a cover. The cover at least partially surrounds the pacemaker. An inner surface of the cover, which faces the pacemaker, includes an inner layer with bioresorbable material. There are also described methods for implanting and explanting an intracardiac pacemaker.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: July 27, 2021
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Thomas Doerr, Dirk Muessig
  • Patent number: 11071491
    Abstract: Cardiac repolarization activity can be mapped using action potential duration (“APD”) and/or activation recovery interval (“ARI”). APD can be measured using a bipolar electrogram signal measured, for example, using a monophasic action potential (“MAP”) catheter. ARI can be measured using unipolar electrogram signals. The electrogram signal is used to identify a depolarization tick time. A repolarization tick time can be identified using either a point in time when the electrogram signal passes below a threshold or via local maxima and minima of a first derivative of the electrogram signal. Diastolic intervals can also be computed using depolarization and repolarization tick times.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: July 27, 2021
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Jatin S. Relan, Valtino X. Afonso
  • Patent number: 11065445
    Abstract: Closed-loop transcranial stimulation and monitoring is disclosed that includes generating a stimulation signal having a set of first oscillation parameters; applying the stimulation signal transcranially to a patient; monitoring the stimulation signal as applied to the patient; receiving a brain activity signal from the patient; generating a feedback signal based on the monitored stimulation signal as applied to the patient; and generating a modified activity signal by subtracting the feedback signal from the brain activity signal; determining one or more second oscillation parameters of the modified activity signal; and adjusting the set of first oscillation parameters of the stimulation signal based on the one or more second oscillation parameters of the modified activity signal. Closed-loop transcranial stimulation and monitoring is also disclosed in which the patient is engaged in a cognitive task.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: July 20, 2021
    Assignee: Monash University
    Inventors: Paul B Fitzgerald, Caley M. Sullivan, Richard H. Thomson
  • Patent number: 11064918
    Abstract: The invention provides a body-worn patch sensor for simultaneously measuring a blood pressure (BP), pulse oximetry (SpO2), and other vital signs and hemodynamic parameters from a patient. The patch sensor features a sensing portion having a flexible housing that is worn entirely on the patient's chest and encloses a battery, wireless transmitter, and all the sensor's sensing and electronic components. It measures electrocardiogram (ECG), impedance plethysmogram (IPG), photoplethysmogram (PPG), and phonocardiogram (PCG) waveforms, and collectively processes these to determine the vital signs and hemodynamic parameters. The sensor that measures PPG waveforms also includes a heating element to increase perfusion of tissue on the chest.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: July 20, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Erik Tang, Matthew Banet, Marshal Dhillon, James McCanna
  • Patent number: 11058340
    Abstract: The invention provides a neck-worn sensor for simultaneously measuring a blood pressure (BP), pulse oximetry (SpO2), and other vital signs and hemodynamic parameters from a patient. The neck-worn sensor features a sensing portion having a flexible housing that is worn entirely on the patient's chest and encloses a battery, wireless transmitter, and all the sensor's sensing and electronic components. It measures electrocardiogram (ECG), impedance plethysmogram (IPG), photoplethysmogram (PPG), and phonocardiogram (PCG) waveforms, and collectively processes these to determine the vital signs and hemodynamic parameters. The sensor that measures PPG waveforms also includes a heating element to increase perfusion of tissue on the chest.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: July 13, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Erik Tang, Matthew Banet, Marshal Dhillon, James McCanna, Mark Dhillon
  • Patent number: 11052255
    Abstract: Systems and methods for pacing cardiac conductive tissue are described. A medical system includes an electrostimulation circuit to generate His-bundle pacing (HBP) pulses. A sensing circuit senses a physiologic signal, and detect a local His-bundle activation discrete from a pacing artifact of the HBP pulse. A control circuit verifies capture status in response to the HBP pulses. Based on the capture status, the control circuit determines one or more pacing thresholds including a selective HBP threshold representing a threshold strength to capture only the His bundle but not the local myocardium, and a non-selective HBP threshold representing a threshold strength to capture both the His bundle and the local myocardium. The electrostimulation circuit may deliver HBP pulses based on the selective and non-selective HBP thresholds.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: July 6, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Amy Jean Brisben, David J. Ternes, Allan Charles Shuros, Deepa Mahajan, David L. Perschbacher
  • Patent number: 11045373
    Abstract: A portable, personal therapy chamber for provision of infrared radiation therapy. The therapy chamber includes a pair of telescopically positionable cabins that are lightweight and easily portable by a single user. The therapy chamber is configured for use by a single person lying generally prone on a surface. The cabins are disposed to overlie the user and include a plurality of infrared radiation elements that direct infrared energy toward the user's body. When using the therapy chamber, the user's head extends from an open end of the cabin. A facial treatment fixture is integrated with the cabin to be extendable longitudinally from a terminal end thereof and to overlie the user's face/head. The therapy chamber can be configured to provide mild hyperbaric oxygen therapy in addition to infrared therapy.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: June 29, 2021
    Assignee: Sunlighten, Inc.
    Inventor: Aaron Michael Zack
  • Patent number: 11045094
    Abstract: The invention provides a neck-worn sensor for simultaneously measuring a blood pressure (BP), pulse oximetry (SpO2), and other vital signs and hemodynamic parameters from a patient. The neck-worn sensor features a sensing portion having a flexible housing that is worn entirely on the patient's chest and encloses a battery, wireless transmitter, and all the sensor's sensing and electronic components. It measures electrocardiogram (ECG), impedance plethysmogram (IPG), photoplethysmogram (PPG), and phonocardiogram (PCG) waveforms, and collectively processes these to determine the vital signs and hemodynamic parameters. The sensor that measures PPG waveforms also includes a heating element to increase perfusion of tissue on the chest.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: June 29, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Erik Tang, Matthew Banet, Marshal Dhillon, James McCanna
  • Patent number: 11045254
    Abstract: A steerable laser probe may include a handle having a handle distal end and a handle proximal end, a plurality of actuation controls of the handle, a flexible housing tube having a flexible housing tube distal end and a flexible housing tube proximal end, and an optic fiber disposed within an inner bore of the handle and the flexible housing tube. An actuation of an actuation control of the plurality of actuation controls may gradually curve the flexible housing tube. A gradual curving of the flexible housing tube may gradually curve the optic fiber. An actuation of an actuation control of the plurality of actuation controls may gradually straighten the flexible housing tube. A gradual straightening of the flexible housing tube may gradually straighten the optic fiber.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: June 29, 2021
    Assignee: KATALYST SURGICAL, LLC
    Inventors: Gregg D Scheller, Matthew N Zeid
  • Patent number: 11039751
    Abstract: The invention provides a neck-worn sensor for simultaneously measuring a blood pressure (BP), pulse oximetry (SpO2), and other vital signs and hemodynamic parameters from a patient. The neck-worn sensor features a sensing portion having a flexible housing that is worn entirely on the patient's chest and encloses a battery, wireless transmitter, and all the sensor's sensing and electronic components. It measures electrocardiogram (ECG), impedance plethysmogram (IPG), photoplethysmogram (PPG), and phonocardiogram (PCG) waveforms, and collectively processes these to determine the vital signs and hemodynamic parameters. The sensor that measures PPG waveforms also includes a heating element to increase perfusion of tissue on the chest.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: June 22, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Erik Tang, Matthew Banet, Marshal Dhillon, James McCanna, Mark Dhillon
  • Patent number: 11039956
    Abstract: An ophthalmological laser therapy device including a laser system, an x-y scanner, collecting optics and a z-scanner. The invention also relates to a method for processing a tissue of an eye by a therapeutic laser beam of an ophthalmological laser therapy device. The invention provides an ophthalmological laser therapy device and a corresponding method which permit, with minimal engineering complexity, a very quick positioning of the laser spot in a large volume region, in particular in a large x-y region perpendicular to the optical axis. The problem is also solved by a method for processing a tissue of the eye or a material located in an eye using an ophthalmological laser therapy device, wherein each sub-section of the tissue of the eye is processed using a corresponding positioning or the device for the adjustable redirecting of the laser beam in an image field of the collection optics.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: June 22, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Beate Böhme, Marco Hanft, Thomas Nobis
  • Patent number: 11033241
    Abstract: Pulse oximeter systems are described that detect an oxygen level of a user and/or monitor a user's heart rate. The pulse oximeter systems are configured to provide an alert when a user's detected oxygen level decreases below an established oxygen level, and/or when a user's heart rate decreases below a lower threshold value and/or increases above an upper threshold value. For example, an alert may be provided when a user's detected oxygen level decreases by more than about five percent (5%) of an established oxygen level. In some instances, an operator can set a level at which an alert will be provided.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: June 15, 2021
    Inventor: Mollie Evans
  • Patent number: 11033980
    Abstract: A device for material processing by laser radiation, including a source of laser radiation emitting pulsed laser radiation for interaction with the material, optics focusing the pulsed processing laser radiation to a center of interaction in the material, and a scanning unit shifting the positions of the center of interaction within the material. Each processing laser pulse interacting with the material in a zone surrounding the center of interaction assigned to the laser pulse so that material is separated in the zones of interaction. A control unit controls the scanning unit and the source of laser radiation such that a cut surface is produced in the material by sequential arrangement of zones of interaction. The control unit controls the source of laser radiation and the scanning unit such that adjacent centers of interaction are located at a spatial distance a ?10 ?m from each other.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: June 15, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Mark Bischoff, Dirk Muehlhoff, Gregor Stobrawa
  • Patent number: 11026587
    Abstract: The invention provides a neck-worn sensor for simultaneously measuring a blood pressure (BP), pulse oximetry (SpO2), and other vital signs and hemodynamic parameters from a patient. The neck-worn sensor features a sensing portion having a flexible housing that is worn entirely on the patient's chest and encloses a battery, wireless transmitter, and all the sensor's sensing and electronic components. It measures electrocardiogram (ECG), impedance plethysmogram (IPG), photoplethysmogram (PPG), and phonocardiogram (PCG) waveforms, and collectively processes these to determine the vital signs and hemodynamic parameters. The sensor that measures PPG waveforms also includes a heating element to increase perfusion of tissue on the chest.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: June 8, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Erik Tang, Matthew Banet, Marshal Dhillon, James McCanna, Mark Dhillon
  • Patent number: 11026666
    Abstract: An articulated tool positioning apparatus comprising a base member, an intermediate member, an end member and a first tool holder arranged in succession, each of the base member, intermediate member, end member and tool holder having a respective central opening. A first plurality of coupled guides id positioned between the base member and the intermediate member and a second plurality of coupled guides is positioned between the intermediate member and the end member. A third plurality of coupled guides is diposed between the end member and the tool holder. The base member, intermediate member, end member, first tool holder and first second and third pluralities of coupled guides all have a central opening and guide openings or securing points for securing pluralities of flexible control links to the base member or to an object separated from the base member.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: June 8, 2021
    Assignee: Titan Medical Inc.
    Inventors: Rene Robert, David Allen Zitnick, Peter John Kenneth Cameron, Leonard M. Faria, Andrea Bajo
  • Patent number: 11020061
    Abstract: A first vital signs information detecting sensor and a second vital signs information sensor are attached to a living body. The first vital signs information detecting sensor detects over time first vital signs information and first motion information of the living body. The first vital signs information and the first motion information are transmitted from the first vital signs information detecting sensor to a receiver. The second vital signs information detecting sensor detects over time second vital signs information and second motion information of the living body. The second vital signs information and the second motion information are transmitted from the second vital signs information detecting sensor to the receiver. The first vital signs information and the second vital signs information are displayed on a display of the receiver in a synchronized state, on the basis of the first motion information and the second motion information.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: June 1, 2021
    Assignee: NIHON KOHDEN CORPORATION
    Inventors: Norihito Konno, Yosuke Nagasawa
  • Patent number: 11020605
    Abstract: Methods are disclosed for reduction of muscle fatigue, enhancement of wound healing and tissue repair and/or reduction of pain. The methods comprise irradiating a muscle or an injured tissue of a subject, as applicable, with pulsed blue and/or red light having an average irradiance that ranges from 0.1 mW/cm2 to 20 mW/cm2 at a radiant exposure that ranges from 0.5 J/cm2 to 60 J/cm2. The pulsed blue and/or red light is preferably applied with a flexible light source that includes a flexible light emitter positioned between a flexible anode and a flexible cathode. The flexible light emitter may comprise a printed LED film or OLEDs that emit blue and/or red light, or a printed LED film or OLEDs that emit blue light in combination with a quantum dot film that converts a portion of the blue light emission into red light.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: June 1, 2021
    Assignee: CAREWEAR CORP.
    Inventor: John C. Castel